The Random Laser

When we first heard the term “random laser,” we did a double-take. After all, most ordinary sources of light are random. One defining characteristic of a traditional laser is that it emits coherent light. By coherent, in this context, that usually includes temporal coherence and spatial coherence. It is anything but random. It turns out, though, that random laser is a bit of a misnomer. The random part of the name refers to how the device generates the laser emission. It is true that random lasers may produce output that is not coherent over long time scales or between different emission points, but individually, the outputs are coherent. In other words, locally coherent, but not always globally so.

That is to say that a random laser might emit light from four different areas for a few brief moments. A particular emission will be coherent. But not all the areas may be coherent with respect to each other. The same thing happens over time. The output now may not be coherent with the output in a few seconds.

Baseline

A conventional laser works by forming a mirrored cavity, including a mirror that is only partially reflective. Pumping energy into the gain medium — the gas, semiconductor, or whatever — produces more photons that further stimulate emission. Only cavity modes that satisfy the design resonance conditions and experience gain persist, allowing them to escape through the partially reflecting mirror.

The laser generates many photons, but the cavity and gain medium favor only a narrow set of modes. This results in a beam that is of a very narrow band of frequencies, and the photons are highly collimated. Sure, they can spread over a long distance, but they don’t spread out in all directions like an ordinary light source. Continue reading “The Random Laser”

Seeing Sound With A Laser

You can hear sound, of course, but what if you could see it with a laser? That’s what [Goosetopherson] thought about, and thus a new project that you can see in the video below was born.

The heart of the project is an I2S chip and an ESP32. Sound energy deforms a plastic film that causes a mirror to move. The moving mirror alters the course of the laser’s beam. Continue reading “Seeing Sound With A Laser”

Mass Spectrometer Tear Down

If you have ever thought, “I wish I could have a mass spectrometer at home,” then we aren’t very surprised you are reading Hackaday. [Thomas Scherrer] somehow acquired a broken Brucker Microflex LT Mass Spectrometer, and while it was clearly not working, it promised to be a fun teardown, as you can see in the first part of the video below.

Inside are lasers and definitely some high voltages floating around. This appears to be an industrial unit, but it has a great design for service. Many of the panels are removable without tools.

Continue reading “Mass Spectrometer Tear Down”

A Holographic Seven-Segment Clock

Seven-segment displays are one of the most ho-hum ways to display the time. They were cool for a little bit in the 70s, but by now, they’re a little bit old hat. That is, unless you get weird with it. This holographic seven-segment clock from [mosivers] qualifies neatly in that category.

The first step was to make the holographic segment displays, because they’re not really something you can just buy off the shelf. [mosivers] achieved this by using a kit from LitiHolo, which enables you to create holograms by shooting a laser at special holographic film. Only, a few upgrades were made to use the kit with a nicer red diode laser that [mosivers] had on hand for better performance. The seven-segment layouts were carefully recorded on to the film to form the basic numerals of the clock, such that illuminating the films from different angles would light different segments of the numeral. It’s quite involved, but it’s explained well in the build video.

As for the timekeeping side of things, an ESP32 was used, setup to query a network time server to stay accurate. The microcontroller then commands a series of LEDs to light up as needed to illuminate the relevant segments of the holographic film to show the time.

Ultimately, [mosivers] built a cool clock with a look you won’t find anywhere else. It’s a lot more work than just wiring up some classic seven-segment LEDs, but we think the result is worth it. If you fancy other weird seven-segment builds, though, we’ve got plenty of others in the till.

Continue reading “A Holographic Seven-Segment Clock”

A frame from the two billion frames per second camera

Filming At The Speed Of Light, About One Foot Per Nanosecond

[Brian Haidet] published on his AlphaPhoenix channel a laser beam recorded at 2 billion frames per second. Well, sort of. The catch? It’s only a one pixel by one pixel video, but he repeats it over and over to build up the full rendering. It’s a fascinating experiment and a delightful result.

For this project [Brian] went back to the drawing board and rebuilt his entire apparatus from scratch. You see in December last year he had already made a video camera that ran at 1,000,000,000 fps. This time around, in order to hit 2,000,000,000 fps at significantly improved resolution, [Brian] updated the motors, the hardware, the oscilloscope, the signalling, the recording software, and the processing software. Basically, everything.

One of the coolest effects to come out of this new setup is how light appears to travel noticeably faster when coming towards the camera than when moving away from it. It’s an artifact of the setup: laser beams that reflect off of fog particles closer to the camera arrive sooner than ones that bounce back from further away. Or, put another way, it’s special relativity visualized in an experiment in [Brian]’s garage. Pretty cool.

If you found all this intriguing and would like to know more, there’s some bonus material that goes into much more depth.

Engrave A Cylinder Without A Rotary Attachment? No Problem!

Laser-engraving a cylindrical object usually requires a rotary attachment, which is a motorized holder that rotates a cylindrical object in sync with the engraver. But [Samcraft] shows that engraving all around a mug can be done without a motorized rotary holder.

Separating a design into elements thin enough to engrave individually without losing focus is the key.

The basic idea is to split the design into a number of separate engraving jobs, each containing one element of the overall design, then setting the mug into a 3D printed jig and manually rotating it between jobs. To demonstrate, [Samcraft] selects a series of line-art flowers and plants which are ideal for this approach because there’s no need to minutely register the individual engravings with one another.

What about focus? [Samcraft] found that a design up to 45 mm wide could be engraved onto the curved surface of his mug before focus suffers too much. It’s true that this technique only works with certain types of designs — specifically those with individual elements that can be separated into tall and thin segments — but the results are pretty nice.

Laser engravers are a very serious potential eye hazard, and we are not delighted to see the way the shield around [Samcraft]’s engraver cannot close completely to accommodate the mug while the laser is active. But we’re going to assume [Samcraft] has appropriate precautions and eye protection in place off-camera, because laser radiation and eyeballs absolutely do not belong together, even indirectly.

Continue reading “Engrave A Cylinder Without A Rotary Attachment? No Problem!”

Hackaday Links Column Banner

Hackaday Links: June 29, 2025

In today’s episode of “AI Is Why We Can’t Have Nice Things,” we feature the Hertz Corporation and its new AI-powered rental car damage scanners. Gone are the days when an overworked human in a snappy windbreaker would give your rental return a once-over with the old Mark Ones to make sure you hadn’t messed the car up too badly. Instead, Hertz is fielding up to 100 of these “MRI scanners for cars.” The “damage discovery tool” uses cameras to capture images of the car and compares them to a model that’s apparently been trained on nothing but showroom cars. Redditors who’ve had the displeasure of being subjected to this thing report being charged egregiously high damage fees for non-existent damage. To add insult to injury, if renters want to appeal those charges, they have to argue with a chatbot first, one that offers no path to speaking with a human. While this is likely to be quite a tidy profit center for Hertz, their customers still have a vote here, and backlash will likely lead the company to adjust the model to be a bit more lenient, if not outright scrapping the system.

Continue reading “Hackaday Links: June 29, 2025”