A Look Inside IKEA’s Vallhorn Motion Sensor Teardown

A good source of hackable home automation parts has come for a while in the form of inexpensive modules offered by large retailers such as Lidl, or IKEA. They’re readily available and easy to play with, they work with open source hubs, so what’s not to like! As an example, [Circuit Valley] has an IKEA Vallhorn motion sensor for a teardown, it’s as you might expect, a passive infrared sensor (PIR) sensor coupled with a Zigbee interface.

Inside the ultrasonic welded case is a small PCB and a Fresnel lens on the inside of the top cover, and a small PCB for the electronics. We applaud the use of a Swiss Army knife can opener as a spudger. The interesting part comes in identifying the individual components: the Silicon Labs EFR32MG21 SoC is easy enough, but another mystery 8-pin chip is more elusive. The part number suggests an Analog Devices op-amp for signal conditioning the PIR output, but the pinout seems not to support it and from here we think it’s too expensive a part for a budget item like this.

There’s a handy header for talking to the SoC, which we’d love to report is open and ready to be hacked, but we’re not getting too optimistic. Even if not hackable though, we’re guessing many of you find uses for these things. Continue reading “A Look Inside IKEA’s Vallhorn Motion Sensor Teardown”

RepTrap Keeps Watch Over Our Cold-Blooded Friends

Wait a second, read that title again. This isn’t a throwback 3D printing project at all. That’s “RepTrap” as in reptile trap, and it’s a pretty clever way to study our cold-blooded friends in their natural habitat.

Now, game cameras — or trail cameras, if you’re less interested in eating what you see — are pretty much reduced to practice. For not that much money you can pick up one of these battery-powered devices, strap it to a tree, and have it automatically snap high-quality pictures of whatever wildlife happens to wander past. But nearly all of the commercially available game cameras have pyroelectric infrared sensors, which trigger on the temperature difference between a warm-blooded animal and the ambient temperature of the background. But what to do when you’re more interested in cold-blooded critters?

Enter [Mirko], who stumbled upon this problem while working with a conservation group in Peru. The group wanted to study snakes, insects, and other ectothermic animals, which are traditionally studied by trapping with pitfalls and other invasive techniques. Unable to rely on PIR, [Mirko] rigged up what amounts to a battery-powered light curtain using a VL53L4CD laser time-of-flight sensor. Mounted above the likely path of an animal, the sensor monitors the height of everything in its field of view. When an animal comes along, cold-blooded or otherwise, RepTrap triggers a remote camera and snaps a picture. Based on the brief video below, it’s pretty sensitive, too.

[Mirko] started out this project using an RP2040 but switched to an ESP32 to take advantage of Bluetooth camera triggering. The need for weatherproofing was also a big driver for the build; [Mirko] is shooting for an IP68 rating, which led to his interesting use of a Hall sensor and external magnet as a power switch.

Continue reading “RepTrap Keeps Watch Over Our Cold-Blooded Friends”

Motion-Activated Clock Only Lights Up On Command

While some of us can fall asleep anywhere from a noisy auditorium to a brightly lit train station, others are more fussy, requiring quiet and dark to nod off. [Craig Lindley] likes to minimize light when he’s trying to sleep, and decided to build himself a simple clock that wouldn’t disturb his rest.

The basic concept was to build a clock that would only display the time on command. In this case, that command would be a wave of a hand in front of the clock. The build is based around a Lilygo ESP32 T-Display unit, which combines the ESP32 with an LCD display and a battery management system. The ESP32’s WiFi connection provides accurate time via querying an NTP server. A passive infrared motion sensor is used to detect the motion of the user’s hand in front of the clock.

While all kinds of clocks and clock radios are available out there, few are motion activated. [Craig]’s work is a great demonstration of building your own solutions to your problems. We’ve seen some other neat motion-sensing convenience hacks before, too!

Adding MQTT To A Solar Powered PIR Light

The size and price of the ESP wifi modules have quickly made them into one of the preferred building blocks for IoT devices. Unfortunately they are not particularly well suited for very low power applications.  [LittlePetieWheat] wanted to add MQTT to a cheap PIR solar light, so he paired an ESP with an Attiny85 to hold it to a strict power budget.

Most of these lights contain some sort of no-name microcontroller that monitors the analog PIR sensor, and turns on the LEDs as required. [LittlePetieWheat] replaced the PIR sensor with one that gives a digital output for simpler interfacing. The Attiny serves as the low power brains of the project. Its tasks include reading the solar panel and battery voltages, and PIR output. When movement is detected by the sensor, it activates a clever little latching power circuit to power on the ESP01 just long enough to send a MQTT message. The LEDs are only turned on if there is no power coming from the solar panel. The solar power is stored in a 18650 battery.

The Attiny85 might not be a powerhouse, but it is perfect for simple, low power applications like this. We’ve also seen it pushed to its limits by running tiny machine learning models, or receiving software updates over I2C. Continue reading “Adding MQTT To A Solar Powered PIR Light”

Into The Belly Of The Beast With Placemon

No, no, at first we thought it was a Pokemon too, but Placemon monitors your place, your home, your domicile. Instead of a purpose-built device, like a CO detector or a burglar alarm, this is a generalized monitor that streams data to a central processor where machine learning algorithms notify you if something is awry. In a way, it is like a guard dog who texts you if your place is unusually cold, on fire, unlawfully occupied, or underwater.

[anfractuosity] is trying to make a hacker-friendly version based on inspiration from a scientific paper about general-purpose sensing, which will have less expensive components but will lose accuracy. For example, the article suggests thermopile arrays, like low-resolution heat-vision, but Placemon will have a thermometer, which seems like a prudent starting place.

The PCB is ready to start collecting sound, temperature, humidity, barometric pressure, illumination, and passive IR then report that telemetry via an onboard ESP32 using Wifi. A box utilizing Tensorflow receives the data from any number of locations and is training to recognize a few everyday household events’ sensor signatures. Training starts with events that are easy to repeat, like kitchen sounds and appliance operations. From there, [anfractuosity] hopes that he will be versed enough to teach it new sounds, so if a pet gets added to the mix, it doesn’t assume there is an avalanche every time Fluffy needs to go to the bathroom.

We have another outstanding example of sensing household events without directly interfacing with an appliance, and bringing a sensor suite to your car might be up your alley.

The Swiss Army Knife Of Bench Tools

[splat238] had a ton of spare sensors laying around that he had either bought for a separate project or on an impulse buy, so he knew he had to do something with them. He decided to build his own digital multi-tool focusing on sensors that would be particularly useful in a workshop setting. Coincidentally, he was inspired by a previous hack that we covered a while back.

He’s equipped his device with a bubble level, tachometer, IR thermometer, protractor, laser pointer, and many, many more features that would make great additions to any hacker’s workspace. There’s a good summary of each sensor, making his Instructable somewhat of a quick guide to common sensing modalities for hardware designers. The tachometer, thermometer, laser pointer, and a few other capabilities are notable upgrades from the project we highlighted previously. We also appreciate the bigger display, allowing for more detailed user feedback particularly in using the compass and bullseye digital level among other features.

The number of components in [splat238’s] build is too extensive to detail one-by-one in this article, so please see his Instructable linked above for all the details. [splat238] made his own PCB for mounting each sensor and did a good job making the design modular so you wouldn’t need to add certain components if you don’t need them. Most of the components take some through-hole soldering with only a handful of 0805 resistors required otherwise. The housing was designed such that the user can handle the tool with one hand and can switch between each function with a push of a button.

Finally, the device is powered using a rechargeable lithium-polymer battery making it very reusable. And, if there weren’t enough features already, the battery can be charged via USB or through two solar panels mounted into the housing unit. Okay, solar charging might be a case of featuritis, but still a cool build either way.

Check out some other handy DIY tools on Hackaday.

Continue reading “The Swiss Army Knife Of Bench Tools”

Fail Of The Week: How Not To Do IoT Security

There are a lot of bad days at work. Often it’s the last day, especially when it’s unexpected. For the particularly unlucky, the first day on a new job could be a bad day. But the day you find an unknown wireless device attached to the underside of your desk has to rank up there as a bad day, or at least one that raises a lot of serious questions.

As alarming as finding such a device would be, and for as poor as the chain of decisions leading these devices being attached to the workstations of the employees at a mercifully unnamed company, that’s not the story that [Erich Styger] seeks to tell. Rather, this is a lesson in teardown skills – for few among us would not channel the anger of finding something like this is into a constructively destructive teardown – and an investigation into the complete lack of security consideration most IoT devices seem to be fielded with these days.

Most of us would recognize the device as some kind of connected occupancy sensor; the PIR lens being the dead giveaway there. Its location under a single person’s desk makes it pretty clear who’s being monitored.

The teardown revealed that the guts of the sensor included a LoRa module, microcontroller, a humidity/temperature sensor, and oddly for a device apparently designed to stick in one place with magnets, an accelerometer. Gaining access to the inner workings was easy through the UART on the microcontroller, and through the debug connectors and JTAG header on the PCB. Everything was laid out for all to see – no firmware protection, API keys in plain text, and trivially easy to reflash. The potential for low-effort malfeasance by a compromised device designed to live under a desk boggles the mind.

The whole article is worth a read, if only as a lesson in how not to do security on IoT devices. We know that IoT security is hard, but that doesn’t make it optional if you’re deploying out in the big wide world. And there’s probably a lot to learn about properly handling an enterprise rollout too. Spoiler alert: not like this.