2023 Halloween Hackfest: Meet Creepsy, The Robotic People-Seeking Ghost

The 2023 Halloween Contest might be over, but we saw some great entries and clever modifications bringing projects into the Halloween spirit. One of them is Creepsy by [Hazal Mestci], a Raspberry Pi-based robotic ghost able to autonomously pick people out of a crowd and glide towards them, emitting eerie sounds as it does so.

The tech behind Creepsy (GitHub repository) originally led the somewhat less spooky existence of a mobile drink serving platform. But with a little bit of modification and the addition of a bedsheet with cutouts for sensors, the transformation into an obstacle-avoiding people-seeking spooker was complete. Key to this transformation was the Viam Python SDK, a software Swiss army knife used by robot builders everywhere. Creepsy itself was built using handy aluminum extrusion, and 3D printed parts along with the requisite suite of motors, cameras, and ultrasonic sensors.

Thanks to everyone who participated in the 2023 Halloween Contest. Got an idea for next year? It’s never too early to get started because ideas are great, but nothing beats “done on time”!

Mini DDR Cabinet Gets Maximum Upgrade

Those shrunken-down arcade cabinets are a nifty idea, but they sure do suck in practice. At least, the Dance Dance Revolution game is full of empty promises. With the $25 cabinet, all you get are three songs that come out of a crappy little speaker, and a not-great display to match.

[BigRig Creates] endeavored to make it better, however, and managed to cram a Raspberry Pi 4 in the cabinet without disturbing the stock components too much. They did have to trim every extraneous piece of plastic from the inside of the cabinet and trim the I/O pins down, but it fit.

What didn’t fit are the fans that [BigRig Creates] needed once it was clear that it was necessary to overclock the Pi. As [BigRig Creates] points out, a custom PCB would have saved some room. And perhaps time. And definitely some wires.

Unfortunately, it wasn’t that simple on the software side. (It never is, is it?) Even getting the screen to work was no picnic. But in the end, it worked, and even survived a bunch of gamers testing it out at LTX. Check it out after the break.

Got an old PS2 DDR controller? You could make it play Simon instead.

Continue reading “Mini DDR Cabinet Gets Maximum Upgrade”

Big Red Button Puts Toddler In Command Of Chromecast

Controversial position: the world needs more buttons. We’ve gotten so far away from physical interfaces like buttons, knobs, and switches in favor of sleek but sterile touch-screen “controls” that when we see something like this big red button so toddlers can start a TV show, we just have to latch onto the story and see what it’s all about.

As it turns out, the big red button itself is probably the least interesting part of [Mads Chr. Olesen] build. The real meat of the project is the reverse engineering effort needed to get Chromecast to start the show. As [Mads] explains, once upon a time a simple GET request to a URL was all it took to do so, but no more; Google has repeatedly nerfed the Chromecast API over the years, enough that [Mads] had some digging to do.

Luckily, pyChromecast is a thing, but using it for DRTV, a streaming service of the Danish Broadcasting Corporation, required figuring out the AppID of the DRTV app. It looks like [Mads] used Wireshark to sniff traffic to and from the Chromecast, and netlog-viewer to analyze the capture. That and a little Developer Tools action in Chrome led to all the information needed to modify pyChromecast to support DRTV. The rest of the project consisted of building a box for the huge red arcade button and wiring it up to a Wemos D1. A Raspberry Pi actually talks to the Chromecast, and now the toddler is able to call up his favorite show and pause and restart it at will, no parent required.

We appreciate the reverse engineering heroics [Mads] displays here, which provide good general lessons for other purposes. It’s been a while since we’ve seen a Chromecast physical interface build, too, so we appreciate the refresher.

Raspberry Pi OS In-Place Upgrades, Not For The Faint Hearted

The Raspberry Pi series of boards are noted for their good software support, with a continuous flow of operating system upgrades such that an original Pi from 2012 will still boot the latest Pi OS. But these upgrades are best done by writing a fresh SD card, so oddly, the Pi remains surprisingly difficult in many cases to upgrade in place. [Iustin Pop] has taken a look at the problem, and finds that though it’s not always easy it remains possible with a bit or work.

An upgrade in place of a Raspberry Pi OS install that’s running on a headless device is probably the simplest of the lot, with a relatively small set of issues. Do it on a machine using the GUI though, and the switch from x.org to Wayland makes for a whole world of pain.

Perhaps most interesting for the insight it gives us into the way Raspberry Pi OS is derived from Debian, is the crossgrade process from the ARMhf build for earlier machines to the ARM64 one for the more recent ones. Here aside from a headache of differing paths and versions, he encounters the Pi-specific compilation tweaks put in place by the developers of Raspberry Pi OS, leading to the ARMhf version being a different branch from the original Debian than the ARM64 one.

Having read his examination of in-place upgrades we have to say that simply writing a new SD card remains the most attractive option. But sometimes along comes a remote system where that’s simply not possible, and this guide might just be very useful sometime.

2023 Halloween Hackfest: Spooky Noise Maker Is Self-Contained

We just love it when y’all build off of each other’s projects. This spooky Halloween noise maker from [C.M. Herron] is no exception. But while the projects we’ve seen lately rely on external computers and/or guitar pedals to create the effects part of the build, this one has everything running on a Raspberry Pi that sits inside the box.

Readers of a certain vintage will recognize this as an 8-track storage box, on top of which are several noise-making objects that creak and ting and reverberate nicely. A USB microphone picks up the sounds, and by using a regular microphone instead of a piezo, [C.M.] can introduce varying levels of feedback to make the sounds even spookier.

So, how did [C.M.] make this work on a Pi 4? To put it simply, they’ve got the Reaper DAW and Windows Valhalla plugins running on top of WINE, which running on top of Box64, which is running on top of the Bullseye Pi OS. [C.M.] sure learned a lot from this build, and hopes to inspire others to build their own spooky noise boxen. Plus, they’ve already thought of ways to improve it for next year. Be sure to check it out in action after the break.

Continue reading “2023 Halloween Hackfest: Spooky Noise Maker Is Self-Contained”

Booting The Raspberry Pi 5 With An NVMe SSD

The Raspberry Pi has come a long way since its humble origins, adding faster processors and better interfaces with each new generation. Now, the Raspberry Pi 5 has a lovely new PCIe port right on board, and [Jeff Geerling] has gone right ahead and slammed in an NVMe SSD as a boot drive.

[Jeff] explains that to use an NVMe to boot, you first have to modify /boot/config.txt to enable PCIe and modify the Raspberry Pi’s boot order. Once the bootloader is appropriately configured, you can boot straight off an SSD with Raspberry Pi OS installed. To get the operating system on to an NVMe drive, he recommends cloning an existing boot volume from a microSD install.

One of the primary reasons you might want to do this is speed. NVMe drives are generally a significant cut above even the best microSD cards, both in speed and reliability. [Jeff] also notes that you can use an NVMe SSD through a PCIe switch on the Pi 5 if you so desire, but you can’t currently boot with this configuration.

It’s a great feature to have on the Pi 5, and it follows on from the earlier implementation on the Raspberry Pi Compute Module 4. Video after the break.

Continue reading “Booting The Raspberry Pi 5 With An NVMe SSD”

Driving An OLED Screen With A 6502 Single-Board Computer

Twenty years ago, if you wanted an LCD for a project, you’d probably end up with something salvaged from a mobile phone or an HD44780 character display. These days, little OLEDs can be had for a few bucks and they’ve taken the maker world by storm. [Anders Nielsen] has recently been experimenting with driving these displays from the vintage 6502 CPU, and he’s even got scrolling operation down pat.

The best part is that [Nielsen] is doing all this on a single-board computer running his own assembly code. That’s right – there’s no compilers here. It’s bare metal coding at it’s best. The build uses a 6507 chip running at 1 MHz, paired with a 6532 RIOT and just 128 bytes of RAM—a similar setup to the Atari 2600.

The video explains how the code stacks up and drives the display, achieving the scrolling effect. It makes a huge difference to usability, especially compared to chunking pages at a time to the postage stamp-sized screen. He demonstrates a legitimate usage case too, using the setup as a serial terminal for a Raspberry Pi.

The 6502 architecture still looms large in the collective consciousness; we’ve been talking about programming it in assembly for years. Video after the break.

Continue reading “Driving An OLED Screen With A 6502 Single-Board Computer”