Screw Drive Tank Is Radio Controlled, 3D Printed

Screw drives are something that we don’t see a lot of – they’ve got an interesting set of attributes making them useful on soft ground, but woe betide you if your local transport department catches you trying to belt one of these up the freeway. After a long development period, [Ivan] has finally perfected his screw drive tank.

This is something that’s been in the works for a long time. It’s a primarily 3D-printed build, showing just how easy it is to build complex machines from scratch in this day and age of rapid prototyping. Over time, [Ivan] has experimented with different screw shapes and taken feedback from his audience on how to improve the craft. With some changes to the gearing and drive layout, the tank returned to the beach, with great success. Powered by twin brushless motors and controlled by off-the-shelf RC gear, the tank has no trouble scooting about the sand.

The project shows the value in iterative design, with [Ivan] taking time to lay out all the parts which have changed since the last revision. It’s a project that is now a five-part series, and we can’t wait to see where it goes next. There’s every chance an amphibious version could be in the works. For something on the larger scale, check out this screw drive tractor set to conquer Canada.

Continue reading “Screw Drive Tank Is Radio Controlled, 3D Printed”

TrackRobot Sports Welded Steel, Not Plastic

Don’t let the knee-high size of [Hrastovc]’s creation fool you. TrackRobot weighs in at a monstrous 60 kg (130 lbs) of steel, motors, and battery. It sports two 48V motors in a body and frame made from pieces of finger-jointed sheet steel, and can reach speeds of up to four meters per second with a runtime of up to an hour. The project’s link has more pictures as well as DXF files of the pieces used for the body.

Currently TrackRobot is remote-controlled, but one goal is to turn it into a semi-autonomous snow plow. You can see TrackRobot going through its first steps as well as testing out a plow prototype in the videos embedded below.

Continue reading “TrackRobot Sports Welded Steel, Not Plastic”

Mini Lathe Makes Tiny Hydraulic Cylinders For RC Snow Plow

You can get pretty much any part you need online these days, but some specialty parts are a little hard to come by. So if your needs are esoteric, like tiny hydraulic cylinders for RC snow plows, you might just have to roll your own.

To be honest, we never really knew that realistic working hydraulics on such a small scale were a thing, but [tintek33]’s video below opened our eyes to a new world of miniature mechanicals. You’d think a linear actuator would be a fine stand-in for the hydraulic ram on a tiny snow plow for an RC truck, but apparently no detail is too small to address in painstaking detail. And as with many things in life, the lathe is the way to get there. Every part is scratch-built from raw brass, aluminum and steel on a mini lathe, with the exception of a few operations that were sent over to the mill that could have been done with hand tools in a pinch. The video is longish, so if you’re not into machining you can skip to 16:40 or so and pick the action up at final assembly. The finely finished cylinder is impressively powerful when hooked up to [tintek33]’s hydraulic power pack, and looks great on the plow. He’s got some other videos on his site of the RC snow plow in action that are worth a look, too.

Ready to take the plunge with a lathe but don’t know where to start? We’ve covered the basics of adopting a new lathe before.

Continue reading “Mini Lathe Makes Tiny Hydraulic Cylinders For RC Snow Plow”

Hackaday Links Column Banner

Hackaday Links: February 4th, 2018

Here’s something remarkably displeasant. Can you cook a steak with glue? [Dom] and [Chris] from ExplosiveDischarge have cooked a steak using a huge, huge amount of two-part epoxy. The chemistry behind this is just the exothermic reaction when two-part epoxy kicks off, and yes, the steak (a very thin cut) was sufficiently wrapped and protected from the hot sticky goo. What were the results? An overcooked steak, actually. This isn’t a sous vide setup where the temperature ramps up to 50°C and stays there — the temperature actually hit 80°C at its peak. There are a few ways to fix this, either by getting a thicker cut of steak, adding some bizarre water cooling setup to keep the temperature plateaued at a reasonable temperature.

This is your weekly reminder for the Repairs You Can Print contest.

We’ve got a twofer for awesome remote-controlled hovering stuff. The first is a 1:8 scale Harrier. This plane designed and built by [Joel Vlashof] will be a reasonably accurate model of a Harrier, capable of VTOL. It’s built around a huge 130mm EDF, powered by 2x6s lipos, and stabilized with a kk2.1 flight controller with VTOL software. This is as accurate a Harrier that you’re going to get in such a small format, and has the cool little spinny vanes that allow the beast to transition from vertical to horizontal flight.

Want some more cool hovering things? [Tom Stanton] is building a remote controlled Chinook. Yes, that helicopter with two main rotors. The usual way of doing this is with proper helicopter control systems like collectives and Jesus nuts. [Tom]’s building this version with standard quadcopter technology, mounting a motor to a servo, and doubling it up, and mounting it on a frame. In effect, this RC Chinook is the tail boom of a tricopter doubled up on a single frame. It does fly, and he’s even built a neat foamboard body for it.

SpaceX’s Falcon Heavy is going to do something next Tuesday, sometime in the afternoon, east coast time. Whatever happens, it’s going to be spectacular.

Hey, it’s time for a poll. I need to decide between ‘tide pod’ and ‘solo jazz’. For what I’m doing, the cost and effort are the same, I just need to know which is more aesthetic, cool, or whatever. Right now it’s 50:50. One must be crowned victorious!

Here’s the stupidest thing you’re going to see all year. That’s someone looping a quadcopter in front of a Frontier A320 (Probably. Seems too big for a 319 and too small for a 321) on approach. This guy is 3.6 miles East of runway 25L at McCarran Internation in Las Vegas, at an altitude far above the 400-foot limit. Judging from the video and the wingspan, this quad came within 200 feet of a plane carrying at least 150 people. It’s the stupidest thing you’ve ever seen, so don’t do it. It’ll be great to see the guy responsible for this in jail.

Hackaday Links Column Banner

Hackaday Links: January 21, 2018

You know what next week is? Sparklecon! What is it? Everybody hangs out at the 23b Hackerspace in Fullerton, California. Last year, people were transmuting the elements, playing Hammer Jenga, roasting marshmallows over hot resistors, and generally having a really great time. It’s the party for our sort of people, and there are talks on 3D projection mapping and a hebocon. I can’t recommend this one enough.

The STM32F7 is a very, very powerful ARM Cortex-M7 microcontroller with piles of RAM, oodles of Flash, DSP, and tons of I/O. It’s a relatively new part, so are there any breakout or dev boards for it? Sure thing. [satsha] used a desktop CNC mill to create what is probably the simplest possible breakout board for the STM32F7. There’s not much here — just some parts for power and a few LEDs — but this is all you need to get one of these powerful chips up and running.

It’s cold and dark and you can’t fly RC airplanes in January. It’s not because planes and quadcopters don’t work in the cold (they should work better, but I’d love to see a graph of battery temperature and density altitude), it’s that your hands don’t work in the cold. What’s the solution? Just strap some motorcycle handwarmer thingies onto your transmitter. With a 2200 battery strapped to the back, you’ll get about an hour of runtime for these handwarmers.

The BBC is reporting the latest advancement in Hyperloop technology. Is it a fundamentally different way of digging tunnels that isn’t simply scaling down the size of tunnel boring machines? No. Is it improvements in material science that would allow the seals on a 500-mile-long steel pressure chamber to exist? No. Does this latest advancement mitigate the ‘hillbillies with guns’ problem that would turn every Hyperloop car into a literal bullet screaming towards one of the most spectacular deaths possible? No. The chief executive of the Virgin Hyperloop project has something better in mind. A smartphone app, “that would connect future Hyperloop passengers with other modes of transport on arrival.”

See This Slick RC Strandbeest Zip Around

Bevel gears used to mount motors vertically.

Theo Jansen’s Strandbeest design is a favorite and for good reason; the gliding gait is mesmerizing and this RC version by [tosjduenfs] is wonderful to behold. Back in 2015 the project first appeared on Thingiverse, and was quietly updated last year with a zip file containing the full assembly details.

All Strandbeest projects — especially steerable ones — are notable because building one is never a matter of simply scaling parts up or down. For one thing, the classic Strandbeest design doesn’t provide any means of steering. Also, while motorizing the system is simple in concept it’s less so in practice; there’s no obvious or convenient spot to actually mount a motor in a Strandbeest. In this project bevel gears are used to mount the motors vertically in a central area, and the left and right sides are driven independently like a tank. A motor driver that accepts RC signals allows the use of an off the shelf RC transmitter and receiver to control the unit. There is a wonderful video of the machine zipping around smoothly, embedded below.

Continue reading “See This Slick RC Strandbeest Zip Around”

3D Printed Airplane Engine Runs On Air

One of the most important considerations when flying remote-controlled airplanes is weight. Especially if the airplane has a motor, this has a huge potential impact on weight. For this reason, [gzumwalt] embarked on his own self-imposed challenge to build an engine with the smallest weight and the lowest parts count possible, and came away with a 25-gram, 8-part engine.

The engine is based around a single piston and runs on compressed air. The reduced parts count is a result of using the propeller axle as a key component in the engine itself. There are flat surfaces on the engine end of the axle which allow it to act as a valve and control its own timing. [gzumwalt] notes that this particular engine was more of a thought experiment and might not actually produce enough thrust to run an airplane, but that it certainly will spark up some conversations among RC enthusiasts.

The build is also one of the first designs in what [gzumwalt] hopes will be a series of ever-improving engine designs. Perhaps he should join forces with this other air-powered design that we’ve just recently featured. Who else is working on air-powered planes? Who knew that this was a thing?

Continue reading “3D Printed Airplane Engine Runs On Air”