An Effects Pedal For Keyboards (and Mice)

Effects pedals for musical instruments like electric guitars can really expand a musician’s range with the instrument. Adding things like distortion, echo, and reverb at the push of a button can really transform the sound of a guitar and add depth to a performance. But [Guy] wondered why these effects should be limited to analog signals such as those from musical instruments, and set about to apply a number of effects to the use of computer keyboards and mice with this HID effects pedal.

The mouse is perhaps the closer of the two to an analog device, so the translations from the effects pedal are somewhat intuitive. Reverb causes movements in the mouse to take a little bit of extra time before coming to a stop, which gives it the effect of “coasting”. Distortion can add randomness to the overall mouse movements, but it can also be turned down and even reversed, acting instead as a noise filter and smoothing out mouse movements. There’s also a looper, which can replay mouse movements indefinitely and a crossover, which allows the mouse to act as a keyboard.

For the keyboard, included effects are a tremolo, which modulates between upper- and lower-case at certain intervals; echo, which repeats keypresses; and a pitch-shift which outputs a “higher” character in the alphabet above whichever one has been pressed. Like the mouse, there’s also a crossover mode which allows the keyboard to be used as a mouse.

The device looks and feels like an effects pedal for a guitar would, with a RP2040 inside to intercept HID information, do the signal processing, and then output the result to the computer. And, while [Guy] admits this was a fun project with not many practical uses, there are a couple handy ones including potentially the distortion effect to smooth out mouse inputs for those with neuromuscular disorders or the mouse looper to act as a mouse jiggler for those with micromanaging employers. It’s also reprogrammable, and as we’ve seen since time immemorial having a programmable foot keyboard can be extremely handy for certain workflows.

Continue reading “An Effects Pedal For Keyboards (and Mice)”

Smart Doorbell Focuses On Privacy

As handy as having a smart doorbell is, with its ability to remotely see who’s at the front door from anywhere with an Internet connection, the off-the-shelf units are not typically known for keeping user privacy as a top priority. Even if their cloud storage systems were perfectly secure (which is not a wise assumption to make) they have been known to give governmental agencies and police free reign to view the videos whenever they like. Unfortunately if you take privacy seriously, you might need to implement your own smart doorbell yourself.

The project uses an ESP32-CAM board as the doorbell’s core, paired with a momentary push button and all housed inside a 3D-printed enclosure. [Tristam] provides a step-by-step guide, including printing the enclosure, configuring the ESP32-CAM to work with the popular open-source home automation system ESPHome, handling doorbell notifications automatically, and wiring the components. There are plenty of other optional components that can be added to this system as well, including things like LED lighting for better nighttime imaging.

[Tristam] isn’t much of a fan of having his home automation connected to the Internet, so the device eschews wireless connections and batteries in favor of a ten-meter USB cable connected to it from a remote machine. As far as privacy goes, this is probably the best of all worlds as long as your home network isn’t doing anything crazy like exposing ports to the broader Internet. It also doesn’t need to be set up to continuously stream video either; this implementation only takes a snapshot when the doorbell button is actually pressed. Of course, with a few upgrades to the ESP circuitry it is certainly possible to use these chips to capture video if you prefer.

Thanks to [JohnU] for the tip!

USB-C Cable Tester Is Compact And Affordable

We’ve all been bitten before by USB cables which were flaky, built for only charging, or just plain broken. With the increased conductor count and complexity of USB Type C, there are many more ways your cable can disappoint you. Over in Austria, [Peter Traunmüller] aka [petl] has designed the C2C caberQU USB C cable tester. This small PCB tester checks every wire on the cable, including the shield, and both connector orientations. He also makes a version for testing USB A to C cables (see video below the break).

Automatic cable testers are often associated with factory production, where you want to test a large quantity of cables quickly and automatically, and are priced accordingly. But this project makes it affordable and easy for anyone to test single cables in a home lab or small office.

The tester only checks for basic continuity, but that should solve a majority of USB-C cable problems. All the documentation for this tester is available on the project’s GitHub repository, including Gerbers, schematics, and mechanical details. Or if you’d rather buy one pre-made, [petl] has put them up for sale on Tindie. Continue reading “USB-C Cable Tester Is Compact And Affordable”

The Right Equipment Makes A Difference For Digital Oscilloscope Music

We all love our cheap digital oscilloscopes, and with good reason. But if there’s one place where analog scopes still shine, it’s anywhere you need X-Y mode. Digitally sampling the inputs and mapping them on the screen as discrete points just isn’t the same as steering an electron beam around a CRT, making X-Y mode work on digital scopes — at least the affordable ones — somewhat lacking.

Thankfully, nobody told [Mark Hughes] that his digital scope would make a lousy X-Y display, so he just plunged ahead and figured out how to make it work anyway. The results are actually pretty good, but it took some doing. His setup begins with OsciStudio, an application built to take 3D shapes and animations and turn them into oscilloscope music. The output from that is piped to a USB sound card; [Mark] used a PreSonus Studio 26c, an adapter with DC-coupled inputs, which he found to be critical to getting good images. Also important was a USB isolator and good-quality cables, which greatly reduced jitter and made the image much more stable.

Displaying the image was as easy as connecting the left and right outputs from the sound card to the two scope inputs — [Mark] used a Keysight EDUX1052G — and setting it to X-Y mode. It took a fair amount of fiddling to get as far as he did, but we think the results speak for themselves. As for the sounds made by these images, he says it’s a bit like a hung sound card when a computer blue-screens. So, yeah — not exactly musical, but still an interesting way to have some fun with your digital scope.

Brute Forcing A Mobile’s PIN Over USB With A $3 Board

Mobile PINs are a lot like passwords in that there are a number of very common ones, and [Mobile Hacker] has a clever proof of concept that uses a tiny microcontroller development board to emulate a keyboard to test the 20 most common unlock PINs on an Android device.

Trying the twenty most common PINs doesn’t take long.

The project is based on research analyzing the security of 4- and 6-digit smartphone PINs which found some striking similarities between user-chosen unlock codes. While the research is a few years old, user behavior in terms of PIN choice has probably not changed much.

The hardware is not much more than a Digispark board, a small ATtiny85-based board with built-in USB connector, and an adapter. In fact, it has a lot in common with the DIY Rubber Ducky except for being focused on doing a single job.

Once connected to a mobile device, it performs a form of keystroke injection attack, automatically sending keyboard events to input the most common PINs with a delay between each attempt. Assuming the device accepts, trying all twenty codes takes about six minutes.

Disabling OTG connections for a device is one way to prevent this kind of attack, and not configuring a common PIN like ‘1111’ or ‘1234’ is even better. You can see the brute forcing in action in the video, embedded below.

Continue reading “Brute Forcing A Mobile’s PIN Over USB With A $3 Board”

Taking Mechanical Keyboard Sounds To The Next Level

When it comes to mechanical keyboards, there’s no end to the amount of customization that can be done. The size and layout of the keyboard is the first thing to figure out, and then switches, keycaps, and then a bunch of other customizations inside the keyboard like the mounting plate and whether or not to add foam strips and other sound- and vibration-deadening features. Of course some prefer to go the other direction with it as well, omitting the foam and installing keys with a more noticeable click, and still others go even further than that by building a separate machine to make their keyboard activity as disruptive as it could possibly be.

This started as a joke among [ac2ev] and some coworkers, who were already teasing about the distinct sound of the mechanical keyboard. This machine, based on a Teensy microcontroller, sits between any USB keyboard and its host computer, intercepting keystrokes and using a small solenoid to tap on a block of wood every time a keystroke is detected. There’s also a bell inside that rings when the enter key is pressed, similar to the return carriage notification for typewriters, and as an additional touch an audio amplifier with attached speaker plays the Mario power-up sound whenever the caps lock key is pressed.

[ac2ev] notes that this could be pushed to the extreme by running a much larger solenoid powered by mains electricity, but since this was more of a proof-of-concept demonstration for some coworkers the smaller solenoid was used instead. The source code for the build can be found on the project’s GitHub page and there’s also a video of this machine in action here as well. Be careful with noisy mechanical keyboards, though, as the sounds the keys produce can sometimes be decoded to determine what the user is typing.

Modular Keyboard And Custom Game Controller

Most video games, whether on console or PC, have standardized around either a keyboard and mouse or an analog controller of some sort, with very little differences between various offerings from the likes of Sony, Microsoft, Nintendo, or even Valve. This will get most of us through almost all video games, but for those looking to take their gameplay up a notch or who are playing much more complex games, certain specialized controllers are available, but they might not meet everyone’s specific needs. Thanks to this custom, modular keyboard anyone should be able to make exactly the controller they need.

The device features a grid of 15 interfaces where modules like buttons, potentiometers, encoders, and joysticks can be placed. Each module can be customized to a significant extent on their own, and they can be placed anywhere on the grid. The modules themselves can be assigned to trigger keyboard presses or gamepad motions depending on the needs of the user. A Raspberry Pi handles the inputs and translates them to the computer, so in that regard it functions no differently than a standard keyboard or gamepad would. Programming is done by sending commands via a USB serial port, with the ability to save various configurations as well.

The modular controller is open-source in terms of hardware and software, with easy assembly using through-hole components and a customizable 3D printed cover for anyone looking to make their own. The project’s creator [Daniel] had flight simulators in mind when designing the device, which often benefit from having more specialized controllers, but any game with lots of specific inputs from Starcraft to League of Legends could benefit from a custom controller or keyboard like this. Flight simulators are more often the targets of specialized and unique controls, though, like this custom yoke or this physical control panel.