Barobot Serves Cocktails While Using Open Design the Right Way

barobot-mechanical-bartender

Oh for the day when we can stop repeatedly looking up our favorite drink recipes on Wikipedia. Those may be just around the corner and you’ll have your choice of single-click delivery or toiling away in the workshop for a scratch build. That’s because Barobot is satisfying both the consumer market and our thirst for open hardware goodness. They’re running a Kickstarter but to our delight, the software and mechanical design files are already posted. Before you dig into the design files there’s a really good look at the constituent parts in the assembly manual (PDF) — that’s a lot of pieces! — and a tiny bit on the tech-stuff page.

This remind us of the Drinkmo we saw earlier in the year. That one cames complete with the high-pitched whine of stepper motors. We didn’t get to hear Barobot’s ambient noise in the promo vid after the break. But one place this desing really shines is a swiveling caddy that allows for a double-row of bottles in a similar footprint. One thing we’d be interesting in finding out is the cleaning procedure. If anyone know what goes into cleaning something like this let us know in the comments.

[Read more...]

Hardware Startup Review: Spark

The Hardware Startup Review - Spark - Hackaday-01

Like it or not, a whole new wave of Hardware Startups is coming our way. Crowd Funding campaigns are making it possible for everyone with an idea to “test the waters”, tech-savvy Angel investors are eager to help successful ones cross over, and Venture Capitalists are sitting on the other side, always on the lookout for potential additions to their “hardware portfolio”. It’s these billion-dollar acquisitions that made everyone jump on the bandwagon, and there’s no going back. At least for now.

That’s all great, and we want to believe that good things will come out of this whole frenzy. But instead of staying on the sidelines, we thought Hackady should get involved and start asking some hard questions. After all, these guys didn’t think they’d be able to get away with some nicely produced videos and a couple of high-res photos, right?

For our first issue, we picked a relatively innocent target – Spark, the team behind the Spark Core development board. By embracing Open Source and Open Hardware as the core part of their strategy, Spark has so far been a positive example in the sea of otherwise dull (and potentially creepy) IoT “platforms”. So we thought we should give [Zach Supalla], CEO of Spark a call.

[Read more...]

SOAP Drama: An Interview With The SOAP Creators

SOAP

A few days ago, we caught wind of SOAP, a Kickstarter project for an Android-based home automation router. With a quad-core ARM, quad gigabit Ethernet ports, 802.11ac, SATA, and every radio under the sun – all for $100 (sans display, $170 with display), it seemed too good to be true. At the time, it probably was: the images from the PCB prototype were taken from [Bunnie Huang]‘s open source laptop, there weren’t enough Ethernet ports for a router, and the hardware just seemed all wrong.

The guys behind SOAP have decided to respond to these accusations by posting a huge update on their Kickstarter page and answering a few questions from me. Interview follows below.


HaD: There’s a BOM/cost analysis breakdown for the Essentials package (the SOAP sans display) that puts the total cost at about $130. This is the reward for pledging at the $100 level. How accurate is this cost analysis, and how do you plan on meeting that reward level?

SOAP: This cost analysis that you mention is very accurate. We will not profit on the early release pricing of $60.00 we have taken the loss leader pricing to attract backers and press (and we think we have done a good job). We are working with a large router manufacturer and this is really the link that makes the pricing possible without them we couldn’t do this.

HaD: You’re using a Quad Core Freescale i.MX processor for SOAP, and putting a four port Gigabit router in there. The Quad core i.MX chips only have one Gigabit port, and that’s limited to 470 Mbps. How are you solving this problem, and what are you using as a MAC/PHY?

SOAP: First off let me state that we are very aware of the CPU limitations and we have done a lot of work on finding a solution and we do have a unique solution. We have support from a big player in the router industry that has offered us a unique solution that we have been working on to bypass this issue. We will post more on this after our trip to San Jose. This is our fallback method and yes its benchmarks are not as pretty as we want them but they are getting there and we feel with enough tweaks we can get this to decent level.

This is from our layout guy: We are planning I.mx processor’s gigabit port will be connected to external IC working as a switch. 1Gb ethernet -> 1 to 4 switch -> 4x Gb Ethernet ports. Possible  http://www.ti.com/lit/ds/symlink/tnetx4090.pdf. Use 4 ports from there plus put RGMII Ethernet transceiver from Marvell  for each ETH port and we will have on board Ethernet switch.

HaD: What WiFi chipset/chipsets are you using? Will that/they be able to do 802.11ac at full speed, and how are you doing this with (I think) only one antenna on the updated board images?

SOAP: The speeds have varied greatly on the chipset and how buggy the software was for the day but we have clocked speeds over 1 gigabyte per second and we will continue to develop this further to achieve maximize speeds this is where our new Union with the guys over at Droidifi will help.

In our prototype we tested Avastar 88W8864, Broadcom 4360 , and a couple more that failed to actually work.  We didn’t get those all functioning like we would have wanted as there is little support for android and router chipsets to date. We demo with a Broadcom chipset.

We want to use Quantenna QAC2300 but at current funding we will be using the Broadcom we have received a lot of suggestions from our backers and a new big player behind us that thinks they have the right match we are waiting to announce this after our meeting in San Jose.

We have one antenna on the most current design but we are planning on adding two more for the final design. We didn’t place them on the most recent design because we are waiting to see how much funding we get to finalize the wifi chipset. We didn’t want antenna design that worked best with a Broadcom when we switch to Marvel or Quantenna.

HaD: What is the status of the software? Do you have a repo somewhere that people could look over?

SOAP: We have been working with a new player from the older kickstarter project called Droidifi. We will be working with them on the software. This is a something we haven’t been able to announce till we lock it down but you are the first to know about this union. Check out our update later today.

HaD: Finally, do you have a functional prototype with the quad-core i.MX, four Ethernet ports, and WiFi? Can we see a video?

SOAP:  If you mean a mass production ready device that can be used by an end user then no. We have a solid functioning proof of concept prototype. We have a lot of Demo videos of our POC that show  what we have developed so far.  We  have to have the current PCB design manufactured to get down to the more rigorous testing and qualifying. All the specs listed on our kickstarter are what we currently are planning and we hope to fulfill the tech specs.

HaD: There are some other questions in the Kickstarter comments section, but honestly I don’t care about how many Twitter followers you have.

SOAP: Twitter was our marketing company. We thought people actually were following us but we have  since found out that half of them are not real. Check this out though.

All in all we understand how ambitious this project looks and we also know that it technology development can run into roadblocks and things but we want to be clear we are not a scam and we are quite aware where these attacks have originated. We will continue to work hard on this project, we will not be running off to Costa Rica and we plan on seeing everyone at CES next year.


The TL;DR for everyone without an attention span:

Yes, the $100/$170 price is too good to be true. It’s called a loss leader to generate interest. This part was a success. The SOAP guys are partnering with the DroidFi guys for the operating system. The Gigabit Ethernet will probably work, and the WiFi is limited by *nix chipset support. No complete functional prototypes yet.

So there you go. It’s not the ideal update with the SOAP crew showing off a shipping container of units ready to be shipped, but the project isn’t in as bad a shape as I originally thought.

SOAP: The Home Automation Router And Kickstarter Scam

SOAP

How would you like a 7″ tablet with a Quad-core ARM Cortex A9 processor, USB 3.0, 32 GB of storage, 802.11ac, four ports of Gigabit LAN, Bluetooth 4.0, NFC, SATA, HDMI, built-in Zigbee and RFID modules, a camera, speaker and microphone, all for $170? Sound too good to be true? That’s because it probably is. Meet SOAP, the home automation router with a touchscreen, that’s shaping up to be one of the largest scams Kickstarter has ever seen.

There have been a few threads scattered over the web going over some of the… “inconsistencies” about the SOAP kickstarter, mainly focusing on the possibility of fake Facebook likes and Twitter followers. There’s also the question of their development process: they started building a router with an Arduino, then moved on to a Raspberry Pi, a Beaglebone, Intel Atom-powered Minnowboard, the Gizmo Board, PandaBoard, and Wandboard. If you’re keeping track, that’s at least six completely different architectures used in their development iterations. Anyone who has ever tried to build something – not even build a product, mind you – will realize there’s something off here. This isn’t even considering a reasonably accurate BOM breakdown that puts the total cost of production at $131.

The most damning evidence comes from screenshots of the final board design. These pics have since been removed from the Kickstarter page, but they’re still available on the Google cache. The SOAP team claims they’re putting USB 3.0 ports on their board, but the pics clearly show only four pins on each of the USB ports. USB 3.0 requires nine pins. A closer inspection reveals these screenshots are from the files for Novena, [Bunnie Huang]‘s open source laptop.

[Read more...]

The Kickstarter Space Cannon

cannon

As far as space travel and Kickstarter is concerned, we’ve seen crowdfunding projects for satellites in low earth orbit, impacting the moon, and even a project for a suborbital rocket. This one, though, takes the cake.  It’s a gun designed to send very small payloads into space on a suborbital trajectory.

The gun itself is an 8-inch bore, 45-foot long monster of an artillery piece. While the simplest way of shooting something down the length of a barrel would be exploding something in the breech, [Richard] is doing something a little more interesting. He’s broken down the propellent charges so instead of one giant propelling a bullet down a barrel, the projectile is constantly accelerated with a number of smaller charges.

The goal of the Kickstarter is to send a small payload into a suborbital trajectory. Later developments will include putting a small rocket motor in the dart-shaped bullet to insert the payload into an orbit.

This isn’t the first time anyone has attempted to build a gun capable of shooting something into space. The US and Canada DOD built a gun that shot a 180 kg projectile to 180 km altitude. The lead engineer of this project, [Gerald Bull] then went on to work with [Saddam Hussein] to design a supergun that could launch satellites into orbit or shells into downtown Tel Aviv or Tehran. [Bull] was then assassinated by either the US, Israeli, Iranian, British, or Iraqi governments before the gun could be completed.

Two videos from the Kickstarter are below, with a few more details on the project’s webpage

[Read more...]

3DMonstr Printer: 8 Cubic Feet Of Build Volume

3D Monster

So you’re looking at 3D printers, but the build volumes for the current offerings just aren’t where you’d like them to be. [Ben Reylblat] had the same problem and came up with the 3DMonstr, an enormous printer that has (in its biggest configuration) a two foot cubed build volume, four extruders, and the mechanical design to make everything work.

Most of the ginormous 3D printers we’ve seen are basically upgraded versions of the common table-top sided models. This huge Ultimaker copy uses the same rods as its smaller cousin, and LeBigRap also uses woefully undersized parts. The 3DMonstr isn’t a copy of smaller machines, and instead uses very big motors for each axis, ball screws, and a proper welded frame. It’s highly doubtful anyone will call this printer a wobblebot.

The 3DMonstr comes in three sizes: 12 inches cubed, 18 inches cubed, and 24 inches cubed, with options for two to four extruders.  We caught up with the 3D Monstr team at the NYC Maker Faire, and from first impressions we have to say this printer is freakin’ huge and impeccably designed.

A Really Big Extruder For Exotic Filaments

extruder

Even with ABS, PLA, Nylon, HIPS, and a bunch of Taulman filaments, the world of 3D printers is missing out on a great supply of spools of plastic filament. Plastic welding rod is available from just about every plastics supplier, and in more variety than even the most well-stocked filament web shop.

This Kickstarter hopes to put all those exotic plastic welding rods to good use. Instead of being designed to only use 1.75 and 3mm filaments, this guy will extrude welding rods up to 4.76mm in diameter. This opens the door for 3D printed objects made out of PDPF, PVC, Polypropylene, Polyethylene and other high molecular weight plastics.

Because these welding rods are much bigger than the usual plastic filament, this extruder also has the option for a very beefy NEMA 23 motor. It’s the perfect solution if you’re planning on building a homebrew ludicrous-sized printer, or you just to show off just how awesome you are.

Follow

Get every new post delivered to your Inbox.

Join 94,628 other followers