I need someone to explain this to me.

Hackaday Links: July 6, 2014

hackaday-links-chain

Power for your breadboards. It’s a USB connector, a 3.3V voltage regulator, and a few pins that plug into the rails of a breadboard.

“Have you seen those ‘Portable battery chargers for smartphones?’ Well the idea of the device is based on it , but the difference here is the internet part.” That’s a direct quote from this Indiegogo campaign. It’s funny because I don’t remember losing my damn mind recently. Wait. It’s $200. Yep. Yep. Definitely lost my mind there.

Putting the Internet on a USB stick not weird enough? Hair Highways. Yep, human hair. It’s just embedding human hair into resin, cutting everything up into plates, and assembling these plates into decorative objects. As a structural material, it’s probably only as strong as the resin itself, but with enough hair set in layers perpendicular to each other, it would be the same idea as fiberglass. Only made out of hair.

Tesla is building a $30,000 car and Harley is building an electric motorcycle. The marketing line for the bike will probably be something like, “living life on your own terms, 50 miles at a time”.

PixelClock? It’s a 64×64 array of red LEDs built to be a clock, and low-resolution display. It looks blindingly bright in the video, something that’s hard to do with red LEDs.

Huge RGB Ring Light Clock

ring

After several months of work, [Greg] has completed one of the most polished LED clocks we’ve ever seen. It’s based on the WS2812 RGB LEDs, with an interesting PCB that allowed [Greg] to make a huge board without spending a lot of money.

The board is made of five interlocking segments, held together with the connections for power and data. Four of these boards contain only LEDs, but the fifth controller board is loaded up with an MSP430 microcontroller, a few capsense pads for a 1-D touch controller, and programming headers.

Finishing up the soldering, [Greg] had a beautiful LED ring light capable of being programmed as a clock, but no enclosure. A normal plastic case simply wouldn’t do, so [Greg] decided to try something he’d never done before: casting the PCB inside a block of resin.

A circular mold was made out of a piece of MDF and a router, and after some problems with clear resin that just wouldn’t cure, his ring light was embedded in a hard, transparent enclosure.  Conveniently stuck in the mold, of course. The MDF had absorbed a little bit of the resin, forcing [Greg] to mill the resin ring free from the wood, with a lot of finish sanding to make the clock pretty.

It’s a clock that demonstrates [Greg]‘s copious manufacturing skills, and also his ability to troubleshoot the problems that arose. While he probably won’t be casting things inside an MDF mold anymore, with the right tools [Greg] could easily scale this up for some small-scale manufacturing.

 

MRRF: 3D Printed Resin Molds

mould

Visiting the Midwest RepRap Festival, you will, of course, find a ton of 3D printed baubles and trinkets. A slightly more interesting find at this year’s MRRF was a lot of resin cast parts from [Mark VanDiepenbos]. He’s the guy behind the RotoMAAK, a spinny, ‘this was in the movie Contact‘-like device designed for spin casting with resins. At the festival, he’s showing off his latest project, 3D printed resin molds.

With the right mold, anyone with 2-part resins can replicate dozens of identical parts in an hour. The only problem is you need a mold to cast the parts. You could print a plastic part and make a silicone mold to cast your part. The much more clever solution would be to print the mold directly and fill it with resin.

[Mark] printed the two-part rabbit mold seen above out of ABS, filled it with urethane resin, and chucked it into his RotoMAAK spin casting machine. Six minutes later the part popped right out, and the mold was ready to make another rabbit.

Video below.

[Read more...]

Hackaday Links: March 3, 2014

hackaday-links-chain

If you’re playing along with Twitch Plays Pokemon, you might as well do it the right way: with the smallest Game Boy ever, the Game Boy Micro. [Anton] needed a battery replacement for this awesome, discontinued, and still inexplicably expensive console and found one in a rechargeable 9V Lithium battery. You get two replacement cells out of each 9V battery, and a bit more capacity as well.

Every garden needs garden lights, right? What does every garden light need? A robot, of course. These quadruped “Toro-bots” react to passersby by brightening the light or moving out of the way. It’s supposed to be for a garden that takes care of itself, but we’re struggling to figure out how lights will do that.

Flexiable 3D prints are all the rage and now resin 3D printers are joining the fray. The folks at Maker Juice have introduced SubFlex, a flexible UV-curing resin. The usual resins, while very strong, are rock solid. The new SubFlex flexible resins are very bendable in thin sections and in thicker pieces something like hard rubber. We’re thinking custom tank treads.

Remember this post where car thieves were using a mysterious black box to unlock cars? Looks like those black boxes have moved from LA to Chicago, and there’s still no idea how they work.

Have a Google Glass? Can you get us on the list? [Noé] and [Pedro] made a 3D printed Google Glass adapter for those of us with four eyes.

Fabricate Your Own 7-Segment Displays

diy-seven-segment-displays

We see more and more projects that use custom molds and casting materials. The latest is this custom seven segment display which [Ray74] put together. The idea of making your own LED displays couldn’t be much easier than this — everything but the LEDs and wire is available at the craft store.

He started by making models of each segment out of pink erasers. The lower left image of the vignette above shows the eraser segments super glued to some poster board. The decimal is a pencil eraser, with a fence of wood to contain the molding material. Amazing Mold Putty was mixed and pressed into place resulting in the mold shown in the upper right.

From there, [Ray] cast the clear epoxy three times. Once dried the clear pieces were sanded, which will shape them up physically but also serves to diffuse the light. They were then placed inside of another mold form and an epoxy pour — this time doped with black enamel paint — finishes the 7-segment module. The final step is to glue the LEDs on the back side and wire them up.

This definitely trumps the build which Hackaday Alum [Kevin Dady] pulled off using hot glue sticks as light pipes.

 

Fine Furniture Kegerator Serves a lot of Beer; Smokes a lot of Cigars

diy-kegerator

This kegerator looks like a piece of fine furniture but closer examination of the build shows that it is at least partially hacked together. As with most of the multi-keg variants on the idea this starts with a chest freezer, but it doesn’t utilize a custom collar as is often the case.

After cutting the holes in the lid of the freezer for these beer towers [Lorglath] began building a wooden frame around it using pocket hole screws. Despite his efforts to keep things plumb and square, there was some… creative… shimming done when it came time to wrap it in oak veneer boards and add the trim pieces. But knowing where to hide the flaws got him through this part of the project and onto the surface finish. Look closely at the image above, all of those scraps are cigar rings. That represents a lot of smoke!

The rings were laid down in layers, with thin resin pours between each. To achieve a smooth and clear finish a heat gun was used to level the surface and pop any bubbles that made their way into the goo. The finished version has room to store eight kegs which are connected to the octet of taps above. That’s a lot of beer to brew, and a lot to drink!

3D Printering: You Want UV Resin?

printering

Just a few short months ago, 3D printing with stereolithography was an uncommon and very expensive proposition. Consumer-oriented SLA machines such as the Form1 and the B9Creator are as expensive as the upper echelons of squirting plastic printers and the community behind these machines isn’t even as diverse as the forums for the fly-by-night printers featured on Kickstarter every week.

This may be about to change with last month’s reveal of the Peachy Printer, a remarkably clever stereolithography printer that requires no special equipment, hardly any electronics, and costs $100. Even if the folks behind Peachy never ship a single unit, their clever engineering ensures that stereolithography will be a staple in the makers toolbox in the near future.

There is, of course, the problem of material. While plastic filament can be bought  just about everywhere, UV curing resin is a little harder to come by and much more expensive per kilogram or liter. Where then does the stereolithography experimenter get their hands on some of this magical material from the future?

Before we get to the article…

I’ve been writing a 3D Printing column once a week for a few months now, and I’m running out of ideas. If you have something in the 3D printer world you’d like to see covered in a little more depth than the standard Hackaday post, send in a tip. I’ll send you a few Hackaday stickers if it’s a good idea.

[Read more...]