Cheap Vacuum Source For Working With Dangerous Chemicals

[Nurdrage] puts out a lot of neat videos, mostly about home chemistry. For the home chemist it is occasionally desirable to pull a vacuum. For example, a potentially dangerous chemical can be boiled and distilled at a much lower temperature than at atmospheric pressures.

However, there’s a problem with just going to the local import store and buying the first vacuum pump on the shelf.  They are primarily designed for atmospheric gasses and tend to melt when exposed to solvents. If you’re a big university or a commercial lab this is no problem. You just drop three grand on a Teflon diaphragm pump or a liquid nitrogen trap. For the home chemist who’s already having enough trouble just buying the chemicals needed for neat experiments, this is not an option.

[Nurdrage] demonstrates the proper usage of a much cheaper option: an aspirator vacuum pump. You might remember something similar from high school chemistry. School pumps generally use flowing tap water to produce the vacuum. [Nurdrage] is saving water by using a fluid pump and a reservoir to drive his aspirator.

Aspirator pumps use the Venturi effect to create a vacuum. These devices are cheap because there are no moving parts. We looked it up and the one he is using costs ten US dollars on fleabay. It can pull enough vacuum to boil water below room temperature.

The video is really good and provides a lot of useful information. It also seems like a really useful device for other hacking tasks outside of home chemistry. Video after the break.

Continue reading “Cheap Vacuum Source For Working With Dangerous Chemicals”

Hackaday Prize Entry: BunnyBot Helps Out All On Its Own

[Jack Qiao] wanted an autonomous robot that could be handy around an ever-changing shop. He didn’t want a robot he’d have to baby sit. If he said, ‘bring me the 100 ohm resistors’, it would go find and bring them to him.

He iterated a bit, and ended up building quite a nice robot platform for under a thousand dollars. It’s got a realsense camera and a rangefinder from a Neato robotic vacuum. In addition to a mircrophone, it has a whole suite of additional sensors in its base, which is a stripped down robotic vacuum from a Korean manufacturer. A few more components come together to give it an arm and a gripper.

The thinking is done on a  Nvidia Jetson TK1 board. The cores on the integrated graphics card are used to perform faster computer vision calculations. The software is all ROS based.

As can be seen in the video after the break. The robot uses SLAM techniques to successfully navigate and complete tasks such as fetch resistors, get water, and more. [Jack Qiao] is happy with his robot, and we would be too.

Continue reading “Hackaday Prize Entry: BunnyBot Helps Out All On Its Own”

Racing Roomba Packs the Power to Pop Wheelies

This is just good, clean fun. Well, maybe not clean since this souped-up racing Roomba appears to move too fast to actually clean anything anymore. But did they ever really clean very well in the first place?

W6yAwJ[Roland Saekow] doesn’t offer much in the way of build details, but the starting point was a 10-year old Roomba Discovery. The stock motors were replaced with 600RPM planetary drive motors and a whopping 12A motor controller. The whole thing is powered off the standard Roomba 14.4V battery pack, but we suspect not for long. Those motors have got to suck down the juice pretty fast to be able to pop wheelies and pull hole shots like it does in the video below.

No word either on how it’s being controlled; our guess is RC, since it looks like the collision sensor grazes a chair leg slightly around the 0:33 mark, but doesn’t seem to change direction. It’d be cool if it could operate autonomously, though. We wonder how it would deal with the Virtual Walls at those speeds.

File this one under “Just for Fun” and maybe think about the possibilities for your defunct Roomba. If speed-vacuuming isn’t your thing, there are plenty of other Roomba hacks around here.

Continue reading “Racing Roomba Packs the Power to Pop Wheelies”

Roomba Now Able to Hunt Arnold Schwarzenegger

Ever since the Roomba was invented, humanity has been one step closer to a Jetsons-style future with robots performing all of our tedious tasks for us. The platform is so ubiquitous and popular with the hardware hacking community that almost anything that could be put on a Roomba has been done already, with one major exception: a Roomba with heat vision. Thanks to [marcelvarallo], though, there’s now a Roomba with almost all of the capabilities of the Predator.

The Roomba isn’t just sporting an infrared camera, though. This Roomba comes fully equipped with a Raspberry Pi for wireless connectivity, audio in and out, video streaming from a webcam (and the FLiR infrared camera), and control over the motors. Everything is wired to the internal battery which allows for automatic recharging, but the impressive part of this build is that it’s all done in a non-destructive way so that the Roomba can be reverted back to a normal vacuum cleaner if the need arises.

If sweeping a just the right time the heat camera might be the key to the messy problem we discussed on Wednesday.

The only thing stopping this from hunting humans is the addition of some sort of weapons. Perhaps this sentry gun or maybe some exploding rope. And, if you don’t want your vacuum cleaner to turn into a weapon of mass destruction, maybe you could just turn yours into a DJ.

Expanding Horizons With The Ion Propelled Lifter

Like many people, going through university followed an intense career building period was a dry spell in terms of making things. Of course things settled down and I finally broke that dry spell to work on what I called “non-conventional propulsion”.

I wanted to stay away from the term “anti-gravity” because I was enough of a science nut to know that such a thing was dubious. But I also suspected that there might be science principles yet to be discovered. I was willing to give it a try anyway, and did for a few years. It was also my introduction to the world of high voltage… DC. Everything came out null though, meaning that any effects could be accounted for by some form of ionization or Coulomb force. At no time did I get anything to actually fly, though there was a lot of spinning things on rotors or weight changes on scales and balances due to ion propulsion.

So when a video appeared in 2001 from a small company called Transdimensional Technologies of a triangle shaped, aluminum foil and wire thing called a lifter that actually propelled itself off the table, I immediately had to make one. I’d had enough background by then to be confident that it was flying using ion propulsion. And in fact, given my background I was able to put an enhancement in my first version that others came up with only later.

For those who’ve never seen a lifter, it’s extremely simple. Think of it as a very leaky capacitor. One electrode is an aluminum foil skirt, in the shape of a triangle. Spaced apart from that around an inch or so away, usually using 1/6″ balsa wood sticks, is a very thin bare wire (think 30AWG) also shaped as a triangle. High voltage is applied between the foil skirt and the wire. The result is that a downward jet of air is created around and through the middle of the triangle and the lifter flies up off the table. But that is just the barest explanation of how it works. We must go deeper!

Continue reading “Expanding Horizons With The Ion Propelled Lifter”

DIY Vacuum Chamber Proves Thermodynamics Professor Isn’t Making It All Up

[Mr_GreenCoat] is studying engineering. His thermodynamics teacher agreed with the stance that engineering is best learned through experimentation, and tasked [Mr_GreenCoat]’s group with the construction of a vacuum chamber to prove that the boiling point of a liquid goes down with the pressure it is exposed to.

His group used black PVC pipe to construct their chamber. They used an air compressor to generate the vacuum. The lid is a sheet of lexan with a silicone disk. We’ve covered these sorts of designs before. Since a vacuum chamber is at max going to suffer 14.9 ish psi distributed load on the outside there’s no real worry of their design going too horribly wrong.

The interesting part of the build is the hardware and software built to boil the water and log the temperatures and pressures. Science isn’t done until something is written down after all. They have a power resistor and a temperature probe inside of the chamber. The temperature over time is logged using an Arduino and a bit of processing code.

In the end their experiment matched what they had been learning in class. The current laws of thermodynamics are still in effect — all is right in the universe — and these poor students can probably save some money and get along with an old edition of the textbook. Video after the break.

Continue reading “DIY Vacuum Chamber Proves Thermodynamics Professor Isn’t Making It All Up”

Professional CNC Vacuum Table Holds Workpieces with Ease

If you do a lot of one-off parts on your CNC machine you’ll know setup is the worst part of the process. Usually you’re using scrap material, you have to figure out how you’re going to clamp it, make sure the the piece is big enough to use, etc etc. Wouldn’t it be nice to just throw the material on the bed and start machining? Well, with a vacuum table as nice as this, you pretty much can!

[Jack Black] has an awesome CNC machine. As he’s been expanding his prototyping abilities, he decided he needed a better way of securing work pieces for machining, so he machined a two-piece aluminum vacuum table.
Continue reading “Professional CNC Vacuum Table Holds Workpieces with Ease”