Helix Display Brings Snake Into Three Dimensions

Any time anyone finds a cool way to display in 3D — is there an uncool way? — we’re on board. Instructables user [Gelstronic]’s method involves an array of spinning props to play the game Snake in 3D.

The helix display consists of twelve props, precisely spaced and angled using 3D-printed parts, each with twelve individually addressable LEDs. Four control groups of 36 LEDs are controlled by the P8XBlade2 propeller microcontroller, and the resultant 17280 voxels per rotation are plenty to produce an identifiable image.

In order to power the LEDs, [Gelstronic] used wireless charging coils normally used for cell phones, transferring 10 W of power to the helix array.  A brushless motor keeps things spinning, while an Arduino controls speed and position via an encoder. All the links to the code used are found on the project page, but we have the video of the display in action is after the break.

Continue reading “Helix Display Brings Snake Into Three Dimensions”

Mitosis: Anatomy of a Custom Keyboard

Ergonomic. Wireless. Low-latency. Minimalist. Efficient. How far do you go when you design your own open-source keyboard? Checking off these boxes and providing the means for others to do so, Redditor [reverse_bias] presents the Mitosis keyboard, and this thing is cool.

The custom, split– as the namesake implies — mechanical keyboard has 23 keys on each 10 cm x 10 cm half, and, naturally, a custom keymapping for optimal personal use.

Upper and lower PCBs host the keys and electronic circuits respectively, contributing to the sleek finished look. Key caps and mechanical switches were ripped from sacrificial boards: two Waveshare core51822 Bluetooth modules are used for communication, with a third module paired with a Pro Micro make up the receiver. Continue reading “Mitosis: Anatomy of a Custom Keyboard”

Networking: Pin the Tail on the Headless Raspberry Pi

Eager to get deeper into robotics after dipping my toe in the water with my BB-8 droid, I purchased a Raspberry Pi 3 Model B. The first step was to connect to it. But while it has built-in 802.11n wireless, I at first didn’t have a wireless access point, though I eventually did get one. That meant I went through different ways of finding it and connecting to it with my desktop computer. Surely there are others seeking to do the same so let’s take a look at the secret incantations used to connect a Pi to a computer directly, and indirectly.

Continue reading “Networking: Pin the Tail on the Headless Raspberry Pi”

Robot Hand Goes Wireless

We can’t decide if [MertArduino’s] robotic hand project is more art or demonstration project. The construction using springs, fishing line, and servo motors isn’t going to give you a practical hand that could grip or manipulate anything significant. However, the project shows off a lot of interesting construction techniques and is a fun demonstration for using nRF24L01 wireless in a project. You can see a video of the contraption, below.

A glove uses homemade flex sensors to send wireless commands to the hand. Another Arduino drives an array of servo motors that make the fingers flex. You don’t get fine control, nor any real grip strength, but the hand more or less will duplicate your movements. We noticed one finger seemed poorly controlled, but we suspect that was one of the homemade flex sensors going rouge.

Continue reading “Robot Hand Goes Wireless”

A Solar-Powered Headset From Recycled Parts

Solar power has surged ahead in recent years, and access for the individual has grown accordingly. Not waiting around for a commercial alternative, Instructables user [taifur] has gone ahead and built himself a solar-powered Bluetooth headset.

Made almost completely of recycled components — reducing e-waste helps us all — only the 1 W flexible solar panel, voltage regulator, and the RN-52 Bluetooth module were purchased for this project. The base of the headset has been converted from [taifur]’s old wired one, meanwhile a salvaged boost converter, and charge controller — for a lithium-ion battery — form the power circuit. An Apple button makes an appearance alongside a control panel for a portable DVD player (of all things), and an MP4 player’s battery. Some careful recovery and reconfiguration work done, reassembly with a little assistance from the handyman’s secret weapon — duct tape — and gobs of hot glue bore a wireless fruit ready to receive the sun’s bounty.

Continue reading “A Solar-Powered Headset From Recycled Parts”

Universal Radio Hacker

If you are fascinated by stories you read on sites like Hackaday in which people reverse engineer wireless protocols, you may have been tempted to hook up your RTL-SDR stick and have a go for yourself. Unfortunately then you may have encountered the rather steep learning curve that comes with these activities, and been repelled by a world with far more of the 1337 about it than you possess. You give up after an evening spent in command-line dependency hell, and move on to the next thing that catches your eye.

You could then be interested by [Jopohl]’s Universal Radio Hacker. It’s a handy piece of software for investigating unknown wireless protocols. It supports a range of software defined radios including the dirt-cheap RTL-SDR sticks, quickly demodulates any signals you identify, and provides a whole suite of tools to help you extract the data they contain. And for those of you scarred by dependency hell, installation is simple, at least for this Hackaday scribe. If you own an SDR transceiver, it can even send a reply.

To prove how straightforward the package is, we put an RTL stick into a spare USB port and ran the software. A little investigation of the menus found the spectrum analyser, with which we were able to identify the 433 MHz packets coming periodically from a wireless thermometer. Running the record function allowed us to capture several packets, after which we could use the interpretation and analysis screens to look at the binary stream for each one. All in the first ten minutes after installation, which in our view makes it an easy to use piece of software. It didn’t deliver blinding insight into the content of the packets, that still needs brain power, but at least if we were reverse engineering them we wouldn’t have wasted time fighting the software.

We’ve had so many reverse engineering wireless protocol stories over the years, to pick only a couple seems to miss the bulk of the story. However both this temperature sensor and this weather station show how fiddly it can be without a handy software package to make it easy.

Via Hacker News.

World’s Thinnest Morse Code Touch Paddle

Morse code enthusiasts can be picky about their paddles. After all, they are the interface between the man and the machine, and experienced telegraphers can recognize each other by their “hands”. So even though [Edgar] started out on a cheap, clicky paddle, it wouldn’t be long before he made a better one of his own. And in the process, he also made what we think is probably the thinnest paddle out there, being a single sheet of FR4 PCB material and a button cell battery. This would be perfect for a pocketable QRP (low-power) rig. Check it out in action in the video below.

There’s not much to a Morse code paddle. It could, of course, be as simple as two switches — one for “dit” and one for “dah”. You could make one out of a paperclip. [Edgar]’s version replaces the switches with capacitive sensing, done by the ATtiny4 on board. Because this was an entry in the 1kB challenge, he prioritized code size over features, and got it down to a ridiculous 126 bytes! Even so, it has deluxe features like autorepeat. We’d have to dig into the code to see if it’s iambic.
Continue reading “World’s Thinnest Morse Code Touch Paddle”