The controller being held in its creator's hand after the modification's been done. The controller is painted in blue-white-black camo-like style. Analog sticks are sticking out where the buttons used to be

Oops! All Analog Sticks

Knowing his friend is a first-person shooter enthusiast, [Solderking] came up with a unique modified XBox controller as a gift. Tongue in cheek, you could argue that this controller is fully analog, as all of the buttons have been removed and replaced with analog sticks — each stick emulating four different buttons with its four different directions.

For this mod, he picked a controller known to have button connections available on testpoints. The controller’s buttons are digital inputs, but a bit of additional resistance wasn’t a problem for the IC in charge. Having tested that to be extra sure, he started the rebuilding work. As any self-respecting one-off mod, the bulk of this project involved JB Weld, point-to-point soldering of wires and taking a Dremel to the shell. That said, this project pays attention to detail, with portions of potentiometer track material carefully scraped off so that contact couldn’t be made in center position, and 3D printed spacers keeping the looks within the “gift-worthy” boundary.

After finishing the controller, [Solderking] tested it to confirm that it was absolutely atrocious to use, and breathed a sigh of relief, with yet another mod well done. We’ve already covered a few of his other fun efforts, like this Pokemon Ruby Nintendo cartridge restoration project where some delicate soldering was called for, or this broken mouse turned 12-key macropad.

Continue reading “Oops! All Analog Sticks”

The Pi Pico board on top of a white box with an Ethernet jack, with a sensor module plugged onto the Pico's pin headers. A black MicroUSB and a green Ethernet cable are connected to this device.

An Elegant Ethernet Library For Your Next RP2040 Project

A few days ago we covered a project that brought Ethernet connectivity to the Raspberry Pi Pico using little more than some twisted pair and a RJ-45 connector. It was a neat trick, but not exactly ready for widespread adoption. Looking to improve on things a bit, [tvlad1234] has taken that project’s code and rewritten it into a friendly library you can use with any RP2040 board.

In case you missed it, the initial demo did 10BASE-T transmission by bit-banging with the PIO, and was able to send UDP messages to devices on the wired LAN. It was an impressive accomplishment, but its code didn’t make it easy to build your project around it. This new library makes UDP messaging as easy as a printf, offloading all non-PIO-managed Ethernet signal work onto the RP2040’s second CPU core. The library even generates a random MAC address out of your flash chip’s serial number!

As a demonstration of the new library, [tvlad1234] has put together a simple Ethernet-connected temperature monitor using the BMP085 or BMP180 sensor connect over I2C. If you feel like you could use an Ethernet transmit-only sensor in your life, browsing the source code would be a great start.

A multimeter connected to the EEPROM chip with crocodile clips, showing that there's a 0.652V diode drop between GND and one of the IO pins

Dead EPROM Dumped With Help Of Body Diodes

[Jason P], evidently an enjoyer of old reliable laser printing tech, spilled a drink (nitter) onto his Panasonic KX-P5400 SideWriter. After cleanup, everything worked fine — except that the PSU’s 5 V became 6.5 V during the accident, and the EPROM with LocalTalk interface firmware died, connection between VCC and GND seemingly interrupted inside the chip. Understandably, [Jason] went on Twitter, admitted the error of his ways, and sheepishly asked around for EPROM dumps.

Instead, [Manawyrm] wondered — would the chip have anti-ESD body diodes from GND to IO pins, by any chance? A diode mode multimeter check confirmed, yes! It was time for an outlandish attempt to recover the firmware. [Manawyrm] proposed that [Jason] connect all output pins but one to 5 V, powering the EPROM through the internal VCC-connected body diodes – reading the contents one bit at a time and then, combining eight dumps into a single image.

After preparing a TL866 setup, one hour of work and some PHP scripting later, the operation was a success. Apparently, in certain kinds of cases, dead ROM chips might still tell their tales! It’s not quite clear what happened here. The bond wires looked fine, so who knows where the connection got interrupted – but we can’t deny the success of the recovery operation! Need a primer on dumping EPROMs that are not dead? Here you go.

Continue reading “Dead EPROM Dumped With Help Of Body Diodes”

The project's hardware, including the ESP32 camera module, stuffed into the GoPro-intended waterproof shell. The camera portion of the ESP32 module sticks out exactly where the GoPro's camera would be. To the left, a hacked ESP32-CAM module is shown.

Hackaday Prize 2022: Solar-Harvesting ESP32 Camera Is Waterproof, Repeatable

[alberto nunez] shows off his sleek build of a solar-harvesting ESP32 camera – waterproof, somewhat energy-efficient, and able to be built by more-or-less anyone. For that, he’s chosen fairly jellybean components – an ESP32-CAM module with a matching protoboard, a small solar cell, a LiFePO4 battery, and a waterproofed GoPro shell that all of these parts neatly fit into.

A BQ25504 energy harvesting chip is used to ensure the ‘solar’ part of the project can meaningfully contribute to the project’s power budget, with energy otherwise mainly provided by the LiFePo4 battery. Since this battery’s nominal voltage is 3.2 V, it can be wired straight to ESP32’s power input and there’s no need for a regulator – thus, that one got mercilessly desoldered. [alberto] has also modded the board using a FET to gate power to the ESP32-CAM module’s camera, with all of these hacks bringing the board’s deep sleep current from 2.8 mA to 0.8 mA. Not great for a low-power device, but not terrible for something you can build so easily. Plus, it’s waterproof, dust-resistant, and quite robust!

These ESP32 camera modules are seriously nifty – we see them put to good use on the regular. Whether you need to detect motion in your Halloween project, decode your water meter readings, or perhaps merely a security camera, it’s worth having a few in your toolbox. Maybe even pick up a programming helper for these while you’re at it!

Mahmut's kid in a helmet, riding the go-kart outside on pavement

Hoverboard Go-Kart Build Is A Delight To Watch

Hoverboards have been an indispensable material for hackers building their own vehicles in the last few years. [Mahmut Demir] shows how he’s built a hoverboard-powered go-kart for his son. Unable to hack the board’s firmware, he instead set out to reuse the hoverboard without any disassembly, integrating it into the go-kart’s frame as-is. This build is completely mechanical, distinguished in its simplicity – and the accompanying six minute video shows it all.

This go-kart’s frame is wood and quite well-built, with the kind of personal touch that one would expect from a father-son gift. Building the vehicle’s nose out of a trashcan gave us a chuckle and earned bonus points for frugality, and the smiley face-shaped wheel is a lovely detail. As for the ‘hoverboard reuse’ part, the board is pivoted backward and forward, just as it normally would be. Rather than feet, the kart uses a lever that’s driven with two pedals through a pulley-string arrangement, giving granular speed control and the ability to reverse. It’s a clever system, in fact we don’t know if we could’ve done it better. You can see [Mahmut]’s son wandering in the background as [Mahmut] goes through the assembly steps — no doubt, having fun doing his own part in the build process.

[Mahmut] tells us he’s also added a remote off switch as a safety feature, and we appreciate that. We’ve seen hoverboards in go-kart builds before, as well as rovers, e-bikes, robot vehicles, and even mobility platforms. Truly, the hoverboard is a unicorn of hacker transportation helpers.
Continue reading “Hoverboard Go-Kart Build Is A Delight To Watch”

screenshot from the video linked, showing example code that lights up an LED, and in a small window, also shows the LED lit up on a small Pi Pico board connected over USB

Your MicroPython Board Can Be Your Tinkering Peripheral

[Brian Pugh] has shared a cool new project that simultaneously runs on desktop Python and MicroPython – the Belay library. This library lets you control a MicroPython device seamlessly from your Python code – interacting with real-world things like analog/digital trinkets, servos, Neopixels and displays, without having to create your own firmware or APIs.

You need a serial-connected MicroPython board – even an ESP8266 should do. Then, you can intersperse your Python code with MicroPython-written functions, and call them whenever you need your connected device to do something – keeping the entire logic of your project within a single device. [Brian] provides quite a few examples, even for more complex things like displays. No doubt, there are limitations, but this looks to be a powerful tool in a hacker’s arsenal.

Readers might be reminded of an Arduino library called Firmata – an old-time way to do such connectivity. We’ve also previously covered a Pi Pico firmware that does a similar thing, and even features a breakout board for all your experimentation needs!
Continue reading “Your MicroPython Board Can Be Your Tinkering Peripheral”

The keyboard, fully assembled, with black 3D printed body.

From Product To Burnout To Open-Source: The Ergo S-1 Keyboard Story

[Andrew] from [Wizard Keyboards] emailed us and asked if we were interested in his story of developing an ergonomic keyboard as a product. Many of us can relate to trying to bring one of our ideas to market. [Andrew], being a mechanical keyboard geek, knew a niche with no product to satisfy it, and had a vision he wanted to implement. He started meticulously going through steps for bringing his keyboard idea into life as a manufacturable product, and gave himself six months to get it done.

 Internals of the keyboard, showing the lower half with the mainboard on the left, and upper half of the keyboard with an FPC connecting keyswitches together on the right

After evaluating competing products and setting a price point, he designed the case, the keyboard’s mainboard, and even flexible circuit boards for wiring the keys up. The mechanical design alone had him go through many iterations and decisions, and he walks us through the different paths he’s faced. Whether it’s these insights, a story of a module with fraudulent FCC certification, or an approach to electronics design that led to him passing EMC tests with flying colors, there’s plenty to learn from [Andrew]’s journey.

Sadly, at some point, the project quickly outgrew the intended goal and became a drain. For instance, tuning the 3D printing processes alone took three months instead of one as planned. As the design was done, he got stuck on marketing material production – a field that turned out to be unexpectedly hostile to a hacker like him. After a year of work and five thousand hours of work spent on the project, he took a break, and afterwards, as he was trying to come back, [Andrew] realized that he has burned out. He took a few month long hiatus, and having recovered a bit, revisited the project. Still not thrilled about the product route, he decided that open-sourcing the keyboard would be the best outcome – doing justice to the time and effort spent working on it.

This is where the story ends – for now. [Andrew] has open-sourced everything one would need to create such a keyboard by yourself, designed assembly instructions, and even sells kit parts for those who’d like to take a shortcut. This wasn’t what he aimed for, but it’s a honorable ending – most commercial projects never get open-sourced even if they utterly fail to launch. Thanks to [Andrew], we got an insightful journey, a postmortem, and an open-source ergonomic keyboard project. Product stories grace our pages every now and then – here’s a similarly swerving story about a MIDI controller.