Magnet Implants, Your Cyborg Primer

What would you do to gain a sixth sense? Some of us would submit to a minor surgical procedure where a magnet is implanted under the skin. While this isn’t the first time magnet implants have been mentioned here on Hackaday, [The Thought Emporium] did a phenomenal job of gathering the scattered data from blogs, forum posts, and personal experimentation into a short video which can be seen after the break.

As [The Thought Emporium] explains in more eloquent detail, a magnet under the skin allows the implantee to gain a permanent sense of strong magnetic fields. Implantation in a fingertip is most common because nerve density is high and probing is possible. Ear implants are the next most useful because oscillating magnetic fields can be translated to sound.

For some, this is merely a parlor trick. Lifting paper clips and messing with a compass are great fun. Can magnet implants be more than whimsical baubles?

Continue reading “Magnet Implants, Your Cyborg Primer”

Hacking Magnets Into Your Skin

[Dave] loved his iPod nano so much that he implanted 4 magnets in his arm to hold it.

Ok, go ahead and shout “fanboy” at your screen and say something snide about apples products or lament the poor working conditions at foxconn. Got it out of your system? Cool.

Actually, if we had to guess, [Dave] really isn’t doing this all for his love of the device or the company. It is much more likely that he is just really into body modding and this was a convenient theme for a mod. We find the idea pretty interesting. We’ve seen implants before, but they are usually of the RFID type. Typically those are used for some kind of security or computer control.

Implanting a magnet, however, is interesting because it could almost give you a “sixth sense” You could detect what was magnetic, and how magnetic it was. If we were going to do something like this, we would probably go fully sub-dermal though to help avoid infection.

What other kind of implants could you realistically do with today’s technology to give yourself other senses?

Wearable Projector Adds Info To Everyday Activities

sixthsense

[Pattie Maes] from MIT’s Media Lab showed a really interesting augmented reality demo at TED this year. It’s a wearable projector that lets you interact with any surface. A camera tracks the gestures your fingertips make and performs related actions. She shows several uses: projecting a dial pad on your hand, displaying additional info on a product you’re holding, and taking a picture when you form a frame with your hands. The current equipment cost is $350, but that would be reduced in a dedicated device.

[via Waxy]

A Nested Gear Clock

One of the most common projects we see here at Hackaday is a clock. It could just be that we as humans are fascinated by the concept of time or that making a piece of functional art appeals to our utilitarian sense. In that spirit, [Alexandre Chappel] set out to make a large mechanical clock with complex gears.

The initial design was made in Fusion360 over a week and then in a somewhat bold move, [Alexandre] started up the CNC and cut all the parts out of valchromat. The basic idea of the clock is that the numbers move on the clock, not the hands. So the clock should show 10:25 instead of moving hands to the 10 and the 5. Most of the clock is made of up stacked gear assemblies, geneva drives, and many bearings. A single stepper motor drives the whole clock, which [Alexandre] admits is a bit of a cheat since trying to add springs and an escapement would add complexity to an already complex clock. He did have to adjust and recut a few gears but most of the assembly came together nicely. Some 3d printed numbers dropped into the CNCed slots offers much-improved readability.

A few problems became apparent once the system was together. The numbers don’t quite line up perfectly, which is unfortunate. He mentioned that tighter tolerances on the gears would likely help there. A fatal design flaw on the smallest disk became apparent as it needs to turn a sixth of the circle whereas the outer circle is just turning a tenth of the circle. Mechanical advantage isn’t in [Alexandre’s] favor and the stepper skips some steps and it slowly makes its way towards the next second digit of the hour.

If you’re looking for more beautiful artistic clocks, why not check out this circuit sculpture one?

Continue reading “A Nested Gear Clock”

Hackaday Links Column Banner

Hackaday Links: May 30, 2021

That collective “Phew!” you heard this week was probably everyone on the Mars Ingenuity helicopter team letting out a sigh of relief while watching telemetry from the sixth and somewhat shaky flight of the UAV above Jezero crater. With Ingenuity now in an “operations demonstration” phase, the sixth flight was to stretch the limits of what the craft can do and learn how it can be used to scout out potential sites to explore for its robot buddy on the surface, Perseverance.

While the aircraft was performing its 150 m move to the southwest, the stream from the downward-looking navigation camera dropped a single frame. By itself, that wouldn’t have been so bad, but the glitch caused subsequent frames to come in with the wrong timestamps. This apparently confused the hell out of the flight controller, which commanded some pretty dramatic moves in the roll and pitch axes — up to 20° off normal. Thankfully, the flight controller was designed to handle just such an anomaly, and the aircraft was able to land safely within five meters of its planned touchdown. As pilots say, any landing you can walk away from is a good landing, so we’ll chalk this one up as a win for the Ingenuity team, who we’re sure are busily writing code to prevent this from happening again.

If wobbling UAVs on another planet aren’t enough cringe for you, how about a blind mechanical demi-ostrich drunk-walking up and down a flight of stairs? The work comes from the Oregon State University and Agility Robotics, and the robot in question is called Cassie, an autonomous bipedal bot with a curious, bird-like gait. Without cameras or lidar for this test, the robot relied on proprioception, which detects the angle of joints and the feedback from motors when the robot touches a solid surface. And for ten tries up and down the stairs, Cassie did pretty well — she only failed twice, with only one counting as a face-plant, if indeed she had a face. We noticed that the robot often did that little move where you misjudge the step and land with the instep of your foot hanging over the tread; that one always has us grabbing for the handrail, but Cassie was able to power through it every time. The paper describing how Cassie was trained is pretty interesting — too bad ED-209’s designers couldn’t have read it.

So this is what it has come to: NVIDIA is now purposely crippling its flagship GPU cards to make them less attractive to cryptocurrency miners. The LHR, or “Lite Hash Rate” cards include new-manufactured GeForce RTX 3080, 3070, and 3060 Ti cards, which will now have reduced Ethereum hash rates baked into the chip from the factory. When we first heard about this a few months ago, we puzzled a bit — why would a GPU card manufacturer care how its cards are used, especially if they’re selling a ton of them. But it makes sense that NVIDIA would like to protect their brand with their core demographic — gamers — and having miners snarf up all the cards and leaving none for gamers is probably a bad practice. So while it makes sense, we’ll have to wait and see how the semi-lobotomized cards are received by the market, and how the changes impact other non-standard uses for them, like weather modeling and genetic analysis.

Speaking of crypto, we found it interesting that police in the UK accidentally found a Bitcoin mine this week while searching for an illegal cannabis growing operation. It turns out that something that uses a lot of electricity, gives off a lot of heat, and has people going in and out of a small storage unit at all hours of the day and night usually is a cannabis farm, but in this case it turned out to be about 100 Antminer S9s set up on janky looking shelves. The whole rig was confiscated and hauled away; while Bitcoin mining is not illegal in the UK, stealing the electricity to run the mine is, which the miners allegedly did.

And finally, we have no idea what useful purpose this information serves, but we do know that it’s vitally important to relate to our dear readers that yellow LEDs change color when immersed in liquid nitrogen. There’s obviously some deep principle of quantum mechanics at play here, and we’re sure someone will adequately explain it in the comments. But for now, it’s just a super interesting phenomenon that has us keen to buy some liquid nitrogen to try out. Or maybe dry ice — that’s a lot easier to source.

Axe Hacks: Spinning Knobs And Flipping Switches

From a guitar hacking point of view, the two major parts that are interesting to us are the pickups and the volume/tone control circuit that lets you adjust the sound while playing. Today, I’ll get into the latter part and take a close look at the components involved — potentiometers, switches, and a few other passive components — and show how they function, what alternative options we have, and how we can re-purpose them altogether.

In that sense, it’s time to heat up the soldering iron, get out the screwdriver, and take off that pick guard / open up that back cover and continue our quest for new electric guitar sounds. And if the thought of that sounds uncomfortable, skip the soldering iron and grab some alligator clips and a breadboard. It may not be the ideal environment, but it’ll work.

Continue reading “Axe Hacks: Spinning Knobs And Flipping Switches”

C++20 Is Feature Complete; Here’s What Changes Are Coming

If you have an opinion about C++, chances are you either love it for its extensiveness and versatility, or you hate it for its bloated complexity and would rather stick to alternative languages on both sides of the spectrum. Either way, here’s your chance to form a new opinion about the language. The C++ standard committee has recently gathered to work on finalizing the language standard’s newest revision, C++20, deciding on all the new features that will come to C++’s next major release.

After C++17, this will be the sixth revision of the C++ standard, and the language has come a long way from its “being a superset of C” times. Frankly, when it comes to loving or hating the language, I haven’t fully made up my own mind about it yet. My biggest issue with it is that “programming in C++” can just mean so many different things nowadays, from a trivial “C with classes” style to writing code that will make Perl look like prose. C++ has become such a feature-rich and downright overwhelming language over all these years, and with all the additions coming with C++20, things won’t get easier. Although, they also won’t get harder. Well, at least not necessarily. I guess? Well, it’s complex, but that’s simply the nature of the language.

Anyway, the list of new features is long, combining all the specification proposals is even longer, and each and every one of these additions could fill its own, full-blown article. But to get a rough idea about what’s going to come to C++ next year, let’s have a condensed look at some of these major new features, changes, and additions that will await us in C++20. From better type checking and compiler errors messages to Python-like string handling and plans to replace the #include system, there’s a lot at play here!

Continue reading “C++20 Is Feature Complete; Here’s What Changes Are Coming”