Monowheels are a singular form of transport. Like electric scooters and the Segway, they are remarkably impractical for getting from point A to point B, are expensive to build or buy, and make you look faintly silly as you ride them down the street. However, we’d be hard pressed to find a member of the Hackaday team that wouldn’t at least want a go on one for half an hour. [MakeItExtreme] felt the same way, and built one of their own.
The build starts with a tube bender, used to form 40mm tubing into a continuous circle to form the main wheel. Teflon is then turned to produce several rollers that interface the main wheel to the inner frame. Several small motorbike tyres were cut apart to create the tread to provide some decent grip. Power comes courtesy of a 110cc four stroke engine, allowing this thing to go just fast enough to get the rider seriously injured in the event of an accident. The team reports stability is poor at low speed, but remarkably good once above 30 km/h.
The team did a great job, and we particularly enjoy the bright orange paint scheme and fetching decals that really finish it off well. The monowheel concept is remarkably similar to the diwheel, which we’ve seen applied to old Fords with somewhat terrifying results. Video after the break.
When it comes to 3D printing, functional prints are still few and far between. Sure, you can print a mount for anything, a Raspberry Pi case, but there are few prints out there that are truly useful, and even fewer that are useful while taking advantage of the specific capabilities of a 3D printer.
The Bouldering Brush from Turbo SunShine turns this observation on its head. It’s a useful device for getting the grime, sand, and sweat out of handholds while rock climbing, and it’s entirely 3D printed using manufacturing techniques only 3D printers can do.
If you’re thinking you’ve seen something like this technique before, you’re correct. The Hairy Lion from [_primoz_] on Thingiverse used a fine mesh of bridging to create small fibers of filament emanating from the mane of a lion. While it’s not a gender-neutral print, this is one of the first objects to make it to Thingiverse that truly showcased the sculptural element of many thin fibers of 3D printed filament. With this Bouldering Brush, these fibers become much more useful and even functional. It’s still a great technique, and if you can get your printer set up correctly and the settings correct, this is an awesome print that will easily demonstrate the capabilities of your printer.
Like the Hairy Lion, the Bouldering Brush is two handles that are mostly solid, and fine filaments of extruded plastic connecting these handles. Take the completed print off the bed , cut down the middle of the bristles, and you have a functional, completely 3D printed brush. Just don’t brush your teeth with it.
If anything ends up on the beds of hobbyist-grade laser cutters more often than birch plywood, it’s probably sheets of acrylic. There’s something strangely satisfying about watching a laser beam trace over a sheet of the crystal-clear stuff, vaporizing a hairs-breadth line while it goes, and (hopefully) leaving a flame-polished cut in its wake.
Acrylic, more properly known as poly(methyl methacrylate) or PMMA, is a wonder material that helped win a war before being developed for peacetime use. It has some interesting chemistry and properties that position it well for use in the home shop as everything from simple enclosures to laser-cut parts like gears and sprockets.
One of the killer apps of 3D printers is the ability to make custom gears, transmissions, and mechanisms. But there’s a learning curve. If you haven’t 3D printed your own gearbox or automaton, here’s a great reason to take the plunge. This morning Hackaday launched the 3D Printed Gears, Pulleys, and Cams contest, a challenge to make stuff move using 3D-printed mechanisms.
Adding movement to a project brings it to life. Often times we see projects where moving parts are connected directly to a servo or other motor, but you can do a lot more interesting things by adding some mechanical advantage between the source of the work, and the moving parts. We don’t care if it’s motorized or hand cranked, water powered or driven by the wind, we just want to see what neat things you can accomplish by 3D printing some gears, pulleys, or cams!
No mechanism is too small — if you have never printed gears before and manage to get just two meshing with each other, we want to see it! (And of course no gear is literally too small either — who can print the smallest gearbox as their entry?) Automatons, toys, drive trains, string plotters, useless machines, clockworks, and baubles are all fair game. We want to be inspired by the story of how you design your entry, and what it took to get from filament to functional prototype.
Resistors are an odd bunch. Why would you have 1.0 Ω resistors, then a 1.1 Ω resistor, but there’s no resistors in between 4.7 Ω and 5.6 Ω? This is a question that has been asked for decades, but the answer is actually quite simple. Resistors are manufactured according to their tolerance, not their value. By putting twenty four steps on a logarithmic scale, you get values that, when you take into account the tolerance of each resistor, covers all possible values. Need a 5.0 Ω resistor? Take a meter to some 4.7 Ω and 5.6 Ω resistors. You’ll find one eventually.
As with all resistor collections, the real problem is storage. With SMD resistors you can stack your reels in stolen milk crates, but for through hole resistors, you’ll need some bins. [FerriteGiant] over on Thingiverse did just that. It’s a 3D printable enclosure that takes all of your E24 series resistors.
The design of this resistor storage solution is a bit like those old wooden cases full of index cards at that building where you can rent books for free. Or, if you like, a handy plastic small parts bin from Horror Fraught. The difference here is that these small cases are designed for the standard length of through-hole resistors, and each of the bins will hold a small 3D printed plaque telling you the value in each bin.
While this is a print that will take a lot of time — [FerriteGiant] spent 100 hours printing everything and used two kilograms of filament — it’s not like through-hole resistors are going away anytime soon. This is a project that you can build and have for the rest of your life, safely securing all your resistors in a fantastic box for all time.
When Charles “Chuck” Yeager reached a speed of Mach 1.06 while flying the Bell X-1 Glamorous Glennis in 1947, he became the first man to fly faster than the speed of sound in controlled level flight. Specifying that he reached supersonic speed “in controlled level flight” might seem superfluous, but it’s actually a very important distinction. There had been several unconfirmed claims that aircraft had hit or even exceeded Mach 1 during the Second World War, but it had always been during a steep dive and generally resulted in the loss of the aircraft and its pilot. Yeager’s accomplishment wasn’t just going faster than sound, but doing it in a controlled and sustained flight that ended with a safe landing.
Chuck Yeager and his Bell X-1
In that way, the current status of hypersonic flight is not entirely unlike that of supersonic flight prior to 1947. We have missiles which travel at or above Mach 5, the start of the hypersonic regime, and spacecraft returning from orbit such as the Space Shuttle can attain speeds as high as Mach 25 while diving through the atmosphere. But neither example meets that same requirement of “controlled level flight” that Yeager achieved 72 years ago. Until a vehicle can accelerate up to Mach 5, sustain that speed for a useful period of time, and then land intact (with or without a human occupant), we can’t say that we’ve truly mastered hypersonic flight.
So why, nearly a century after we broke the sound barrier, are we still without practical hypersonic aircraft? One of the biggest issues historically has been the material the vehicle is made out of. The Lockheed SR-71 “Blackbird” struggled with the intense heat generated by flying at Mach 3, which ultimately required it to be constructed from an expensive and temperamental combination of titanium and polymer composites. A craft which flies at Mach 5 or beyond is subjected to even harsher conditions, and it has taken decades for material science to rise to the challenge.
With modern composites and the benefit of advanced computer simulations, we’re closing in on solving the physical aspects of surviving sustained hypersonic flight. With the recent announcement that Russia has put their Avangard hypersonic glider into production, small scale vehicles traveling at high Mach numbers for extended periods of time are now a reality. Saying it’s a solved problem isn’t quite accurate; the American hypersonic glider program has been plagued with issues related to the vehicle coming apart under the stress of Mach 20 flight, which heats the craft’s surface to temperatures in excess of 1,900 C (~3,500 F). But we’re getting closer, and it’s no longer the insurmountable problem it seemed a few decades ago.
Today, the biggest remaining challenge is propelling a hypersonic vehicle in level flight for a useful period of time. The most promising solution is the scramjet, an engine that relies on the speed of the vehicle itself to compress incoming air for combustion. They’re mechanically very simple, and the physics behind it have been known since about the time Yeager was climbing into the cockpit of the X-1. Unfortunately the road towards constructing, much less testing, a full scale hypersonic scramjet aircraft has been a long and hard one.
If you have an eye for obscure Microsoft products, you may be aware of the Microsoft PixelSense, a table-sized horizontal touchscreen designed as a collaborative workspace. It’s a multi-user computer with no traditional keyboard or mouse, instead multiple users work with documents and other files as though they were real documents on a table. It’s an impressive piece of technology, and it was the first thing that came to mind when we saw [Anitomicals C]’s dual screen portable computer. It has a form factor similar to a large laptop, in which the touchscreen folds upwards to reveal not a conventional keyboard and trackpad, but another identical touchscreen. The entire surface of the computer is a touch display with a desktop propagated across it, and in a similar way to the Microsoft product the user can work exclusively in the touch environment without some of the limitations of a tablet.
He freely admits that it is a prototype and proof of concept, and that is obvious from its large size and extensive use of desktop components. But he has brought it together in a very tidy Perspex case serving as an interesting class in creating a portable computer with well-chosen desktop components, even though with no battery it does not pretend to fit the same niche as a laptop. We’d be interested to see the same interface produced as a less bulky desktop-only version with solely the two monitors, because the horizontal touch screen is what sets this machine apart from other home-made ones.