An Arduino Wrapped In An OLED Wrapped Inside An Enigma Pocket Watch

A pocket watch, tucked into a waistcoat pocket and trailing a long chain, is a retro-hip accessory. A pocket watch gutted of its mechanical innards and updated as a smart appliance might be a horological abomination, but would still be a cool hack. A pocket watch converted to a digital Enigma machine is in a class all by itself.

[Simon] admits that he has a thing for pocket timepieces, having a sizable collection of old and not-so-old watches, some that even serve for everyday carry. Trouble is, they eventually break, and qualified watchmakers are getting hard to come by. So refitting defunct watches has become a hobby for him, and this example is a doozy. It uses an Enigma emulator running on an Arduino, similar to one that he stuffed into a somewhat oversized wristwatch a few years ago. Fitting it into a pocket watch case required a bit of finagling, including a 0.5-mm thick main PCB that flexes a bit to fit the contours of the case. A small OLED screen peeks through the front bezel, which is done up in an attractive black crinkle finish with brass buttons for a nice retro look. There’s even an acid-etched brass badge on the front cover with his special logo, complete with a profile of the original Enigma rotors.

Very impressive workmanship, and we don’t even care that it doesn’t tell time. Need a little background on the original Enigma? [Steve Dufresne] did a great job going through the basics a while back.

Continue reading “An Arduino Wrapped In An OLED Wrapped Inside An Enigma Pocket Watch”

Etch-a-Sketch 3D Printed With Cell Phone

Most of us have fond memories of the Etch-a-Sketch from childhood. [Potent Printables] wanted to update the designs so he 3D printed an XY carriage for a stylus that works with a cell phone drawing program. You can see the video below and the 3D model details on Thingiverse.

The design is fun all by itself, but it also gave us a few ideas. For one thing, if you motorized it you could make some pretty clever drawing toys. But there could be a more practical use, too.

Continue reading “Etch-a-Sketch 3D Printed With Cell Phone”

Putting That Airplane On The Map – Live And With Python

Mankind’s fascination with airplanes is unbroken. Whether you’re outside with your camera, getting an actual glimpse of the aircraft, or sitting at home with your RTL-SDR dongle and have a look at them from a distance, tracking them is a fun pastime activity. Provided, of course, that you are living close by an airport or in an area with high enough air traffic. If not, well there’s always real-time tracking online to fall back to, and as [geomatics] will show you, you can build your own live flight tracking system with a few lines of Python.

As it’s usually the case with Python, a lot of functionality is implemented and readily available from external modules, which lets you focus on the actual application without having to worry too much about the details. Similarly, plenty of data can be requested from all sorts of publicly accessible APIs nowadays. If you are looking for a simple-enough example to get into both subjects with a real-world application, [geomatics]’ flight tracker uses cartopy to create a map using Open Street Map data, and retrieves the flight information from ADS-B Exchange‘s public API.

We have seen ADS-B Exchange mentioned a few times before, for example with this ESP8266 based plane spotter and its successor. And if you’re more curious about the air traffic in your direct surroundings, it’s probably time for a DVB USB dongle.

Amazon Thinks ARM Is Bigger Than Your Phone

As far as computer architectures go, ARM doesn’t have anything to be ashamed of. Since nearly every mobile device on the planet is powered by some member of the reduced instruction set computer (RISC) family, there’s an excellent chance these words are currently making their way to your eyes courtesy of an ARM chip. A userbase of several billion is certainly nothing to sneeze at, and that’s before we even take into account the myriad of other devices which ARM processors find their way into: from kid’s toys to smart TVs.

ARM is also the de facto architecture for the single-board computers which have dominated the hacking and making scene for the last several years. Raspberry Pi, BeagleBone, ODROID, Tinker Board, etc. If it’s a small computer that runs Linux or Android, it will almost certainly be powered by some ARM variant; another market all but completely dominated.

It would be a fair to say that small devices, from set top boxes down to smartwatches, are today the domain of ARM processors. But if we’re talking about what one might consider “traditional” computers, such as desktops, laptops, or servers, ARM is essentially a non-starter. There are a handful of ARM Chromebooks on the market, but effectively everything else is running on x86 processors built by Intel or AMD. You can’t walk into a store and purchase an ARM desktop, and beyond the hackers who are using Raspberry Pis to host their personal sites, ARM servers are an exceptional rarity.

Or at least, they were until very recently. At the re:Invent 2018 conference, Amazon announced the immediate availability of their own internally developed ARM servers for their Amazon Web Services (AWS) customers. For many developers this will be the first time they’ve written code for a non-x86 processor, and while some growing pains are to be expected, the lower cost of the ARM instances compared to the standard x86 options seems likely to drive adoption. Will this be the push ARM needs to finally break into the server and potentially even desktop markets? Let’s take a look at what ARM is up against.

Continue reading “Amazon Thinks ARM Is Bigger Than Your Phone”

NBA Jam Tournament Edition Double Z ROM Hack Screen

NBA Jam ROM Hack On SNES Is Heating Up

It’s a rare game that is able to bridge the gap between sports game fans and those that identify as hardcore gamers. Midway was able to bring those two groups onto common ground when they released NBA Jam to arcades in 1993. The game was an instant hit and was ported to 16-bit home consoles that same year. Compromises were made during those ports, so an attempt to make them more inline with the arcade release came in the form of NBA Jam: Tournament Edition a year later. However, in the heart of [eskayelle] NBA Jam: TE on the Super Nintendo didn’t go far enough. Now they have released a ROM hack that completely reworks NBA Jam: TE, and it’s called the “Double Z Mod”.

The Original NBA Jam Ball from the Title Screen
The original NBA Jam ball (courtesy of Steve Lin)

The concept behind the ROM hack was to bring about the NBA Jam game that fans deserved. All facets of pop culture from the early 90s were mixed in (not just former Presidents). According to the ROM hack’s notes, some of the things that were packed into the mod include:

• Assets from the original game have been restored, such as the Mortal Kombat banners.
• Modified certain players to give them a more “arcadey” feel.
• Soar to new heights with Air Jordan!
• Play as “The Worm”, Dennis Rodman, on at least four teams.
• Forget the Rookies, now play as the 1992 Dream Team.
• Tons of new secret characters including: Hulk Hogan, David Hasselhoff, Arnie as the T-800, and more.
• Expanded rosters are now as easy as inputting the “Konami code”

(Hint: B, A, B, A, Up, Down, B, A, Left, Right, B, A at the title screen menu)

In a gesture to give back to the ROM hacking community, [eskayelle] went as far to provide a collection of helpful tools to help potential SNES ROM hackers build their own NBA Jam: TE remixes. The document details ways to alter player photos, team colors, stats, and cosmetic tweaks. Since the Double Z mod focuses on being as 90s as possible, maybe this collection of tutorials will lead to a current NBA roster update.

To play the NBA Jam TE Double Z mod, you can use devices like the Retrode that allow easy dumping of an original cartridge onto a PC. From there the dumped ROM can be patched using an IPS patcher, like LunarIPS, which is as simple as locating two files in a browser window and hitting “Apply Patch”. In case you needed to see the Double Z mod in action, there is the clip below.

Continue reading “NBA Jam ROM Hack On SNES Is Heating Up”

Why Is Continuous Glucose Monitoring So Hard?

Everyone starts their day with a routine, and like most people these days, mine starts by checking my phone. But where most people look for the weather update, local traffic, or even check Twitter or Facebook, I use my phone to peer an inch inside my daughter’s abdomen. There, a tiny electrochemical sensor continuously samples the fluid between her cells, measuring the concentration of glucose so that we can control the amount of insulin she’s receiving through her insulin pump.

Type 1 diabetes is a nasty disease, usually sprung on the victim early in life and making every day a series of medical procedures – calculating the correct amount of insulin to use for each morsel of food consumed, dealing with the inevitable high and low blood glucose readings, and pinprick after pinprick to test the blood. Continuous glucose monitoring (CGM) has been a godsend to us and millions of diabetic families, as it gives us the freedom to let our kids be kids and go on sleepovers and have one more slice of pizza without turning it into a major project. Plus, good control of blood glucose means less chance of the dire consequences of diabetes later in life, like blindness, heart disease, and amputations. And I have to say I think it’s pretty neat that I have telemetry on my child; we like to call her our “cyborg kid.”

But for all the benefits of CGM, it’s not without its downsides. It’s wickedly expensive in terms of consumables and electronics, it requires an invasive procedure to place sensors, and even in this age of tiny electronics, it’s still comparatively bulky. It seems like we should be a lot further along with the technology than we are, but as it turns out, CGM is actually pretty hard to do, and there are some pretty solid reasons why the technology seems stuck.

Continue reading “Why Is Continuous Glucose Monitoring So Hard?”

Anderson’s Water Computer Spills The Analog Secrets Of Digital Logic

One of the first things we learn about computers is the concept of binary ones and zeroes. When we dig into implementation of digital logic, we start to learn about voltages, and currents, and other realities of our analog world. It is common for textbooks to use flow of water as an analogy to explain flow of electrons, and [Glen Anderson] turned that conceptual illustration into reality. He brought his water computer to the downtown Los Angeles Mini Maker Faire this past weekend to show people the analog realities behind their digital devices.

[Glen]’s demonstration is a translation of another textbook illustration: binary adder with two four-bit inputs and a five-bit output. Each transistor is built from a plastic jewel box whose lid has been glued to the bottom to form two chambers. A ping-pong ball sits in the upper chamber, a rubber flap resides in the lower chamber covering a hole, with a string connecting them so a floating ball would lift the flap and expose the hole.

Continue reading “Anderson’s Water Computer Spills The Analog Secrets Of Digital Logic”