Craziest Pin-Saving LCD Trick Ever!

We love squeezing every last bit of silicon goodness out of a tiny chip, or at least we delight in seeing it done. Today’s analog/digital hack is one of the sweetest we’ve seen in a while. And it’s also a little bit of a puzzle, so don’t scroll down to the answer until you’ve given the schematic a good think-over.

Continue reading “Craziest Pin-Saving LCD Trick Ever!”

Geohot’s Comma.ai Self-Driving Code On GitHub

First there was [Geohot]’s lofty goal to build a hacker’s version of the self-driving car. Then came comma.ai and a whole bunch of venture capital. After that, a letter from the Feds and a hasty retreat from the business end of things. The latest development? comma.ai’s openpilot project shows up on GitHub!

If you’ve got either an Acura ILX or Honda Civic 2016 Touring addition, you can start to play around with this technology on your own. Is this a good idea? Are you willing to buy some time on a closed track?

A quick browse through the code gives some clues as to what’s going on here. The board files show just how easy it is to interface with these cars’ driving controls: there’s a bunch of CAN commands and that’s it. There’s some unintentional black comedy, like a (software) crash-handler routine named crash.py.

What’s shocking is that there’s nothing shocking going on. It’s all pretty much straightforward Python with sprinklings of C. Honestly, it looks like something you could get into and start hacking away at pretty quickly. Anyone want to send us an Acura ILX for testing purposes? No promises you’ll get it back in one piece.

If you missed it, read up on our coverage of the rapid rise and faster retreat of comma.ai. But we don’t think the game is over yet: comma.ai is still hiring. Are open source self-driving cars in our future? That would be fantastic!

Via Endagadget. Thanks for the tip, [FaultyWarrior]!

NixieBot Films Your Tweets

[Robin Bussell]’s NixieBot is a mash up of new age electronics and retro vintage components and he’s got a bunch of hacks crammed in there. It’s a Nixie tube clock which displays tweets, takes pictures of the display when it encounters tweets with a #NixieBotShowMe hash tag, and then posts requested pictures back to twitter. If a word is eight characters, it takes a snapshot. If it’s a longer message, NixieBot takes a series of pictures of each word, converts it to an animated GIF, and then posts the tweet. In between, it displays random tweets every twenty seconds. You can see the camera setup in the image below and you should check out the @nixiebot twitter feed to see some of the action.

nixiebot_05For the display, he’s using eight big vintage Burroughs B7971 Nixie Tubes. These aren’t easy to source, and current prices hover around $100 each if you can find them. The 170V DC needed to run each tube comes from a set of six 12V to 170V converter boards specifically designed to drive these tubes. Each board can drive at least a couple of nixies, so [Robin]’s able to use just four boards for the eight tubes. Each nixie is driven by its own “B7971 SmartSocket“, a dedicated PIC16F690 micro-controller board custom designed for the purpose. A serial protocol makes it easy to daisy-chain the SmartSockets to build multi character displays.

Continue reading “NixieBot Films Your Tweets”

One Bit, One Instruction Discrete CPU

There is a certain benefit to being an early adopter. If you were around when Unix or MSDOS had a handful of commands, it wasn’t hard to learn. Then you learn new things as they come along. If you started learning Linux or Windows today, there’s a huge number of details you have to tackle. You have the same problem trying to learn CPU design. Grappling with the design of a 16-bit CPU with a straightforward data path is hard enough. Throw in modern superscalar execution, pipelining, multiple levels of microcode, speculative execution, and all the other features modern processors have and you’ll quickly find yourself lost in the details.

[Michai Ramakers] wanted to build an educational CPU and he took a novel approach. The transistor CPU uses only one instruction and operates on one bit at a time. Naturally, this leads to a small data path, which is a good thing if you’re only using discrete transistors. His website is a ground-up tutorial in building and using the tiny computer.

Continue reading “One Bit, One Instruction Discrete CPU”

Arm Thrusters, For Underwater Super Powers!

Most of us will have spent the idle hours of our youth while sitting in a room where a teacher was standing at the blackboard explaining iambic pentameter or the Diet of Wurms, daydreaming about the amazing exploits we could have created if only we had an Evil Lair stuffed with all the tools our fertile imaginations demanded. [James Bond] would have had nothing on us, our personal [Q] branch would have ensured we would have had the coolest gadgets on the planet.

As grown-ups we have some of the resources to make this a reality, yet somehow we’ve never made good on the dream. We spend our time creating IoT clocks or novelty electronic Christmas ornaments, and Mr. [Bond] still has a monopoly on the really cool stuff. Fortunately [PeterSripol] has struck a blow on our behalf, because he’s created a pair of arm-mounted underwater thrusters (YouTube, embedded below) that should leave [007] feeling definitely a bit [006.5].

The thrusters themselves came from a Kickstarter purchase that he left on the shelf for a while without an application. Then with only a short time before a trip to Hawaii, he set to work to do something with them, and the arm thrusters were the result.

He makes extensive use of components from the world of radio controlled models, with battery packs and speed controllers mounted in a waterproof food container at his belt, and a pair of handheld microswitch controllers. There is an Arduino which presumably produces the PWM signal, and we are treated to an in-depth look at his waterproofing efforts for the various connectors and switches. After a false start with battery polarity and a cracked impeller housing the device works, and we see it in use on a suitably tropical though not quite sun-kissed beach.

The thrusters appear to work very well, and we’d say they look a lot of fun to use. Sadly the exercise is brought to a halt when a control wire is sucked into a propeller, but we’re sure that’s only a minor setback. We’ve posted the video below the break, take a look.

Continue reading “Arm Thrusters, For Underwater Super Powers!”

The Hunt For Red October In A Bathtub

Anything can be a remote controlled airplane, and ‘copters – quad or not – simply beat the air into submission. Remote controlled cars are easy, and RC tanks can even shoot their guns. One type of vehicle has eluded remote control hobbyists to a large extent; building a remote control submarine is hard. Not only do you have buoyancy to worry about, but you also need a way to keep the dry parts dry, all while operating in an environment where radio doesn’t really work well.

[Ivan] has already built RC planes, but wanted to tackle a new challenge. He built an RC submarine, and he did it using the simplest household materials.

Continue reading “The Hunt For Red October In A Bathtub”

Tesla Coil Powered Film Canister Gatling Gun

What do you get when you combine a Tesla coil, 315 film canisters and a fortune wheel? The answer is of course a film canister Gatling gun. [ScienceBob] has taken the simple film canister cannon hack to a whole new level. The idea is simple, the film canister has a lid that fits tight and allows pressure to build up, so if you fill it with alcohol vapor and ignite it with a spark gap, you get a small explosion that sends the can flying  away.

[ScienceBob] uses 21 rows of fifteen canisters each around the wheel. There is a spark gap for each canister, and all the spark gaps in the same row are in series. You need a lot of volts to turn on fifteen spark gaps, and that is why the Tesla coil is part of the game. When the outer end of the wire in one row passes near the Tesla coil, a spark jumps and fires all the spark gaps, igniting the alcohol vapor and fifteen cans are expelled from the wheel. The wheel rotates until all rows are fired.

While this nice piece of artillery is sure a lot of fun to fire, but don’t ask us to reload it! If you want more power, check this Gatling gun that fires crossbow bolts, or the Gatling water pistol.

Continue reading “Tesla Coil Powered Film Canister Gatling Gun”