Star Wars Pit Droid Has A Jetson Brain

In the Star Wars universe, pit droids are little foldable robots that perform automated repairs on spacecraft and the like. They were introduced in 1999’s The Phantom Menace, and beyond the podracing scenes, are probably the only good thing to come out of that particular film.

[Goran Vuksic] wanted a pit droid of his own, and reasoned that if he was going to go through the trouble of sanding and painting all the 3D printed components so they look like the real bot, he might as well add some smarts to it. While this droid won’t be fixing podracers anytime soon, its onboard Jetson Orin Nano Developer Kit does pack a considerable amount of processing under that dome.

A webcam mounted in the bot’s eye socket is connected to the Jetson, which is running an image detection and identification routine based on the example code provided by NVIDIA. The single-board computer uses a relay to blink some LEDs on and off when a human is detected, and a pair of servos pan-and-tilt the bot’s head towards whoever has caught its gaze.

It’s no surprise that [Goran] picked the Jetson Orin over competing SBCs for this task — in our review of the Orin Nano Developer Kit a few months ago, we found it was able to hit nearly 200 frames per second while performing this sort of real-time image analysis. So there’s plenty of room to grow should he want to integrate more complex image recognition tasks.

For example, he could follow in the footsteps of [Kris Kersey], and put a functional data overlay on top of the video to give his bot Iron Man vision.

Continue reading “Star Wars Pit Droid Has A Jetson Brain”

Hackaday Links Column Banner

Hackaday Links: August 6, 2023

“Have you tried turning it off and on again?” is a common tech support maneuver that everyone already seems to know and apply to just about all the wonky tech in their life. But would you tell someone to apply it to a reservoir? Someone did, and with disastrous results, at least according to a report on the lead-up to the collapse of a reservoir in the city of Lewiston, Idaho — just across the Snake River from Clarkston, Washington; get it? According to the report, operators at the reservoir had an issue crop up that required a contractor to log into the SCADA (supervisory control and data acquisition) system running the reservoir. The contractor’s quick log-in resulted in him issuing instructions to local staff to unplug the network cable on the SCADA controller and plug it back in. Somehow, that caused a variable in the SCADA system — the one storing the level of water in the reservoir — to get stuck at the current value. This made it appear that the water level was too low, which lead the SCADA system to keep adding water to the reservoir, which eventually collapsed.

Continue reading “Hackaday Links: August 6, 2023”

Blinkenlights To Bootloader: A Guide To STM32 Development

While things like the Arduino platform certainly opened up the gates of microcontroller programming to a much wider audience, it can also be limiting in some ways. The Arduino IDE, for example, abstracts away plenty of the underlying machinations of the hardware, and the vast amount of libraries can contribute to this effect as well. It’s not a problem if you just need a project to get up and running, in fact, that’s one of its greatest strengths. But for understanding the underlying hardware we’d recommend taking a look at something like this video series on the STM32 platform.

The series comes to us from [Francis Stokes] of Low Byte Productions who has produced eighteen videos for working with the STM32 Cortex-M4 microcontroller. The videos start by getting a developer environment up and blinking LEDs, and then move on to using peripherals for more complex tasks. The project then moves on to more advanced topics and divides into two parts, the development of an application and also a bootloader. The bootloader begins relatively simply, and then goes on to get more and more features built into it. It eventually can validate and update firmware, and includes cryptographic signing (although [Francis] notes that you probably shouldn’t use this feature for production).

One of the primary goals for [Francis], apart from the actual coding and development, was to liven up a subject matter that is often seen as dry, which we think was accomplished quite well. A number of future videos are planned as well. But, if you’re not convinced that the STM32 platform is the correct choice for you, we did publish a feature a while back outlining a few other choices that might provide some other options to consider.

Continue reading “Blinkenlights To Bootloader: A Guide To STM32 Development”

Hackaday Prize 2023: LoShark, The Radio Debugger For LoRa

LoRa, the Long Range wireless protocol is pretty great for trickling data across long distances. There are some great embedded devices based around STM32, NRF52, and ESP32 microcontrollers. What’s been missing for quite a while is a device that allows for full access to a LoRa radio from a more capable CPU. The wait may be over, as there’s now the LoShark. It’s a USB key form factor, with a MIPS processor running a real Linux kernel. Cool!

The way debugging works is interesting, too. The team at SudoMaker is working on their Resonance runtime, which allows interacting with the onboard sx126x radio chip using JavaScript code. That chip can both send and receive, so this device should be capable of more than just capturing traffic. And if JavaScript isn’t your thing, the Linux system on the device means you can knock yourself out with C or C++ code. Who knows, we may even see Meshtastic running on this thing some day.

If this gets you excited, it’s already available for order for a reasonable $59.99. The LoShark ships in 433, 868, and 915 megahertz versions. It’s a really slick looking device, and maybe worth your time to check out. Enjoy!

Noisy Keyboards Sink Ships

Many of us like a keyboard with a positive click noise when we type. You might want to rethink that, though, in light of a new paper from the UK that shows how researchers trained an AI to decode keystrokes from noise on conference calls.

The researchers point out that people don’t expect sound-based exploits. The paper reads, “For example, when typing a password, people will regularly hide their screen but will do little to obfuscate their keyboard’s sound.”

The technique uses the same kind of attention network that makes models like ChatGPT so powerful. It seems to work well, as the paper claims a 97% peak accuracy over both a telephone or Zoom. In addition, where the model was wrong, it tended to be close, identifying an adjacent keystroke instead of the correct one. This would be easy to correct for in software, or even in your brain as infrequent as it is. If you see the sentence “Paris im the s[ring,” you can probably figure out what was really typed.

We’ve seen this done before, but this technique raises the bar. As sophisticated as keyboard listening was back in the 1970s, you can only imagine what the three-letter agencies can do these days.

In the meantime, the mitigation for this particular threat seems obvious — just start screaming whenever you type in your password.

Got Fireflies? Try Talking To Them With A Green LED

[ChrisMentrek] shares a design for a simple green LED signal light intended for experiments in “talking” to fireflies. The device uses simple components like PVC piping and connectors to make something that resembles a signal flashlight with a momentary switch — a device simple enough to make in time for a little weekend experimenting.

Observe and repeat flashing patterns, and see if any fireflies get curious enough to investigate.

Did you know that fireflies, a type of beetle whose lower abdomen can light up thanks to a chemical reaction, flash in patterns? Many creatures, fireflies included, are quite curious under the right circumstances. The idea is to observe some fireflies and attempt to flash the same patterns (or different ones!) with a green LED to see if any come and investigate.

[ChrisMentrek] recommends using a green LED that outputs 565 nm, because that is very close to the colors emitted by most fireflies in North America. There’s also a handy link about firefly flashing patterns from the Massachusetts Audubon society’s Firefly Watch program, which is a great resource for budding scientists.

If staying up and learning more about nocturnal nightlife is your thing, then in between trying to talk to fireflies we recommend listening for bats as another fun activity, although it requires a bit more than just a green LED. Intrigued? Good news, because we can tell you all about the different kinds of bat detectors and what you can expect from them.

Tensioning 3D Prints For Lightweight, Strong Parts

Desktop 3D printers have come a long way over the past decade. They’re now affordable for almost anyone, capable of printing in many diverse materials, and offer a level of rapid prototyping and development not feasible with other methods. That said, the fact that they are largely limited to printing different formulations of plastic means there are inherent physical limitations to what the machines are capable of, largely because they print almost exclusively in plastic. But augmenting prints with other building techniques, like this method for adding tensioning systems to 3D printed trusses can save weight and make otherwise unremarkable prints incredibly strong.

The build from [Jón Schone] of Proper Printing consists of printed modular sections of truss which can be connected together to make structural components of arbitrary length. To add strength to them without weight, a series of Kevlar threads are strung from one end of the truss to the other on the interior, and then tensioned by twisting the threads at one end. Similar to building with prestressed concrete, this method allows for stronger parts, longer spans, less building material, and lighter weight components. The latter of which is especially important here, because this method is planned for use to eventually build a 3D printer where the components need to be light and strong. In this build it’s being used to make a desk lamp with a hinged joint.

For other innovative 3D printer builds, [Jón] has plenty of interesting designs ranging from this dual extrusion system to this 3D printed wheel for a full-size passenger vehicle. There’s all kinds of interesting stuff going on at that channel and we’ll be on the edge of our seats waiting to see the 3D printer he builds using this tensioned truss system.

Continue reading “Tensioning 3D Prints For Lightweight, Strong Parts”