Soda Can Lamp Pinpoints Your Interests

We’ve said it a million times before: 3D printing will expand your horizons. The more you print, the more you think about things you could print and new ways to use printing in the process of building projects. [AHNT] knows all about this phenomenon, because he thought of a way to use soda cans as canvases for customizable pixel art lamp shades.

[AHNT] designed a printable sleeve that fits perfectly over 250mL cans. It provides a sturdy grid for poking tiny holes with a medical needle, and can be reused indefinitely with any pattern imaginable. He created two different printable bases to illuminate the lamp: one is sized to hold a votive candle, and the other is made for an LED strip circuit with a rocker switch and 12 VDC barrel jack. We suppose it wouldn’t take much to use an RGB LED instead—a Trinket or a Gemma would surely fit in the base.

In the video after the break, [AHNT] talks about prepping the can by cleanly removing the lid, which he does by filing the top edge until the layers separate. He also discusses a few methods for removing the paint, and notes that sandblasting worked the best.

Don’t need another lamp? There’s a million things you can do with that empty soda can. You could make a theremin, or a battery, or even a treasure box. Cut it open and make a solder stencil. Or do something else entirely, and send us a tip.

Continue reading “Soda Can Lamp Pinpoints Your Interests”

From Plastic Bottle To Plastic Brush

We first saw someone turn a plastic bottle into plastic ribbon about four years ago. Since then, we’ve wondered what this abundant, sturdy material could be used for besides just tying things together.

[Waldemar Sha] has answered that question with his excellent brush made from scrap wood and plastic bottle rope. Turning seven 1-litre bottles into curly bristle fodder was easy enough, but they have to be straight to brush effectively. No problem for [Waldemar]. He wound it all up on a  spinning homemade jig that’s anchored in a bench vise. The jig is designed to slide into a small electric sandwich grill he had lying around, and he just flips it after a while so the rope straightens evenly.

We really like the way he secured the bristles into the brush base. After drilling the holes, he sawed lengthwise channels that are deep enough for a bamboo skewer. Each group of bristles is hung over the skewer and down through the hole, and everything is glued in place before the handle is added. Sweep past the break to watch him tidy his workbench, and then learn how to make your own plastic rope.

Is there a better use of recycled plastic than making tools? Check out this joiner’s mallet made from milk jugs. Continue reading “From Plastic Bottle To Plastic Brush”

Better Beer Through Gene Editing

As much as today’s American beer drinker seems to like hoppy IPAs and other pale ales, it’s a shame that hops are so expensive to produce and transport. Did you know that it can take 50 pints of water to grow enough hops to produce one pint of craft beer? While hops aren’t critical to beer brewing, they do add essential oils and aromas that turn otherwise flat-tasting beer into delicious suds.

Using UC Berkley’s own simple and affordable CRISPR-CaS9 gene editing system, researchers [Charles Denby] and [Rachel Li] have edited strains of brewer’s yeast to make it taste like hops. These modified strains both ferment the beer and provide the hoppy flavor notes that beer drinkers crave. The notes come from mint and basil genes, which the researchers spliced in to yeast genes along with the CaS9 protein and promoters that help make the edit successful. It was especially challenging because brewer’s yeast has four sets of chromosomes, so they had to do everything four times. Otherwise, the yeast might reject the donor genes.

So, how does it taste? A group of employees from a nearby brewery participated in a blind taste test and agreed that the genetically modified beer tasted even hoppier than the control beer. That’s something to raise a glass to. Call and cab and drive across the break for a quick video.

Have you always wanted to brew your own beer, but don’t know where to start? If you have a sous vide cooker, you’re in luck.

Continue reading “Better Beer Through Gene Editing”

The Weedinator Returns

We are delighted to see The Weedinator as an entry for the 2018 Hackaday Prize! Innovations in agriculture are great opportunities to build something to improve our world. [TegwynTwmffat]’s Weedinator is an autonomous, electric platform aimed at small farms to take care of cultivating, tilling, and weeding seedbeds. The cost of this kind of labor can push smaller farms out of sustainability if it has to be done by people.

Greater efficiency in agriculture is traditionally all about multiplying the work a single person can do, and usually takes the form or bigger and heavier equipment that can do more at once and in less time. But with an autonomous robotic platform, the robot doesn’t get tired or bored so it doesn’t matter if the smaller platform needs to make multiple passes to cover a field or accomplish a task. In fact, smaller often means more maneuverable, more manageable, and more energy-efficient when it comes to a small farm.

The Original Weedinator was a contender for the 2017 Hackaday Prize and we’re deeply excited to see it return with an updated design and new people joining their team for 2018. Remember, there’s money set aside to help bootstrap promising concepts and all you really need to get started is an idea, an image, and documentation. There’s no better opportunity to dust off that idea and see if it has legs.

Is That A Mars Habitat? A Submarine? A Spaceship? Nope: It’s Home.

[Jan Körbes], an architect living with his daughter in Berlin, specializes in recycling materials. Inspired by discarded grain silos he saw across the Netherlands, he converted one into a micro-home that you would almost expect to see on the surface of mars. The guided tour in the video below give a pretty good feel for the space station feel of the abode.

A lot of the silo house’s design was inspired by [Körbes’] childhood of growing up on boats. It’s exceptionally functional and nearly every nook and cranny of the home can be altered, repurposed, and changed back. For instance: the two pantries on the main floor used to the toilet and shower, but since the silo home is currently set up at ZK/U — Center for Arts and Urbanistics in Berlin — they make use of the facilities there instead.

True to his specialization of creative recycling , a lot of the materials for the house were either donated, or bought at a steep discount due to various reasons. For instance, the windows were a small, unpopular size for most houses but work well here. This led to an evolving design of the house as it was being built, but everything [Körbes] and his daughter need is present inside of fourteen square metres on three floors.

Under the floor on the main level is a bathtub with infrared heating — the cover doubling as the dining table with feet dangling into the tub underneath. The kitchen has a small oven, an old camp stove, and fridge — enough for two people — and the sink uses a foot-activated button so the [Körbes’] use only as much water as they need. A nearby small wood stove with an extendable wood storage basket heats the space.

The house’s electrical (including a solar battery) and water systems are tucked into the basement beside the books, keeping the heavier objects low in such a tall and narrow dwelling. Larger rainwater collection tanks (a hack we’re quite fond of) surrounding the silo house also add ballast in case of storm.

With a two metre ceiling height on the main floor and nearly as much in the bunking quarters upstairs — accessed by a climbing wall, [Körbes] says the space feels much larger than you would expect. Large enough, at least, to host a standing record of a 38-person party. It’s fun to see the ingenuity that goes into tiny living space design. If you missed it, check out these CNC plywood designs for building homes.

Continue reading “Is That A Mars Habitat? A Submarine? A Spaceship? Nope: It’s Home.”

Building A Bioactive Vivarium From An IKEA Shelf

Pets are often worth a labour of love. [leftthegan] — in want of a corn snake — found that Sweden’s laws governing terrarium sizes made all the commercial options to too small for a fully-grown snake. So they took matters into their own hands, building a bioactive vivarium for their pet!

[leftthegan] found an IKEA Kallax 4×4 shelving unit for a fair price, and after a few design iterations — some due to the aforementioned regulations — it was modified by adding a shelf extension onto the front and cutting interior channels for cabling. For the vivarium’s window, they settled on plexiglass but strongly recommend glass for anyone else building their own as the former scratches and bends easily — not great if their snake turns out to be an escape artist! In the interim, a 3D printed handle works to keep the window closed and locked.

Continue reading “Building A Bioactive Vivarium From An IKEA Shelf”

3D Printing With Mussels And Beets

What do you get when you combine oven-baked mussels and sugar beets in a kitchen blender? No, it isn’t some new smoothie cleanse or fad diet. It’s an experimental new recyclable 3D printing material developed by [Joost Vette], an Industrial Design Engineering student at Delft University of Technology in the Netherlands. While some of the limitations of the material mean it’s fairly unlikely you’ll be passing over PLA for ground-up shellfish anytime soon, it does have a few compelling features worth looking into.

Joost Vette

For one thing, it’s completely biodegradable. PLA is technically biodegradable as it’s usually made primarily of cornstarch, but in reality, it can be rather difficult to break down. Depending on the conditions, PLA could last years exposed to the elements and not degrade to any significant degree. But [Joost] says his creation degrades readily when exposed to moisture; so much so that he theorizes it could have applications as a water-soluble support material when printing with a multiple extruder machine.

What’s more, after the material has been dissolved into the water, it can be reconstituted and put back into the printer. Failed prints could be recycled directly back into fresh printing material without any special hardware. According to [Joost], this process can be repeated indefinitely with no degradation to the material itself, “A lot of materials become weaker when recycled, this one does not.

So how can you play along at home? The first challenge is finding the proper ratio between water, sugar, and the powder created by grinding up mussel shells necessary to create a smooth paste. It needs to be liquid enough to be extruded by the printer, but firm enough to remain structurally sound until it dries out and takes its final ceramic-like form. As for the 3D printer, it looks like [Joost] is using a paste extruder add-on for the Ultimaker 2, though the printer and extruder combo itself isn’t going to be critical as long as it can push out a material of the same viscosity.

We’ve seen a number of DIY paste extruder mods for 3D printers, which is a good starting point if you’re getting sick of boring old plastic. Before long you might find yourself printing with living tissue.

[Thanks to Mynasru for the tip]