Sonoff Factory Tour Is A Lesson On Life In Shenzhen

Judging by the popularity of “How It’s Made” and other shows of the genre, watching stuff being made is a real crowd pleaser. [Jonathan Oxer] from SuperHouse is not immune to the charms of a factory tour, so he went all the way to China to visit the factory where Sonoff IoT devices are made, and his video reveals a lot about the state of electronics manufacturing.

Test jig for six units at once

For those interested only in how Sonoff devices are manufactured, skip ahead to about the 7:30 mark. But fair warning — you’ll miss a fascinating discussion of how Shenzhen rose from a sleepy fishing village of 25,000 people to the booming electronics mecca of 25 million that it is today. With growth supercharged by its designation as a Special Economic Zone in the 1980s, Shenzhen is now home to thousands of electronics concerns, including ITEAD, the manufacturers of the Sonoff brand. [Jonathan]’s tour of Shenzhen includes a trip through the famed electronics markets where literally everything needed to build anything can be found.

At the ITEAD factory, [Jonathan] walks the Sonoff assembly line showing off an amazingly low-tech process. Aside from the army of pick and places robots and the reflow and wave soldering lines, Sonoff devices are basically handmade by a small army of workers. We lost count of the people working on final assembly, testing, and packaging, but suffice it to say that it’ll be a while before robots displace human workers in electronic assembly, at least in China.

We found [Jonathan]’s video fascinating and well worth watching. If you’re interested in Sonoff’s ESP8266 offerings, check out our coverage of reverse engineering them. Or, if Shenzhen is more your thing, [Akiba]’s whirlwind tour from the 2016 Superconference will get you started.

Continue reading “Sonoff Factory Tour Is A Lesson On Life In Shenzhen”

Amazon Echo Dot Upgraded To Retro Futuristic Look

It takes a surprising amount of planning and work if you want something to look old. [vemeT5ak] wanted the Echo Dot sitting on his desk to fit a different aesthetic motivated by a 1940s Canadian radio. Armed with Solidworks, a Tormach CNC, and some woodworking tools at Sector67 hackerspace, he built a retro-futuristic case for the Amazon Alexa-enabled gadget. Future and past meet thanks to the design and material appearance of the metal grille and base molding wrapping the wood radio case. The finishing touch is of course the ring of blue light which still shines through from the Echo itself.

A short USB extension cable connects the Echo Dot to the back of the enclosure, and the cavernous inside plus ample holes provide a nice rich sound.

It took about 15 hours of modeling, scaling, and tweaking in Solidworks with an interesting design specification in mind: single-bit operation. This single-bit is not in the electrical sense, but refers to the CNC milling operation. All pieces are cut with a 1/4″ end mill, without any tool changes. Metal pieces were milled from 6061 aluminum and the hickory case (with burgundy stain) was mostly cut on a table saw, but the holes were CNC machined.

What looks like an otherwise perfect build has a single flaw that eats up [vemeT5ak]’s soul; the Echo Dot has a draft angle that wasn’t considered during modeling, and the hole is ever so slightly too wide, meaning it didn’t press fit perfectly flush. Fortunately it’s not noticeable behind the metal grill, and unless you knew (please help keep his dirty little secret), you would think everything turned out perfectly.

It turns out building a case for the Echo Dot is challenging for a few reasons; the rubbery material on the bottom doesn’t allow anything to stick to it, and the sides are smooth and featureless with a taper that makes it difficult to lock it in. Many cases resort to clipping over the top to hold it in place. Others install it into a fish or a furby.

Exploring Options For DIY Waterproofing

TL;DR — Don’t use silicone to pot electronics.

That’s the conclusion [GreatScott!] comes to after trying out several methods for waterproofing electronics. His efforts stem from a recent video in which he discovered that water and electricity sometimes actually do mix, as long as the water is distilled and the electronics in the drink are relatively simple. He found that the main problem was, unsurprisingly, electrolytic corrosion, so he set out to experiment with various waterproofing coatings. In a series of careful experiments he goes through the pros and cons of both conformal coatings and potting compounds. The conformal tests used simple clear nail polish on an ESC board; that worked pretty well, but it was a little hard to reach all the nooks and crannies. He also tried potting with a thick black silicone compound, but that ended up never really curing in the middle. A final attempt with legitimate two-part epoxy potting compound sealed up the ESC tight, although we doubt the resulting brick would perform well on a quadcopter.

If you want to explore potting a bit further, check out this introduction to the basics.

Continue reading “Exploring Options For DIY Waterproofing”

Low-Power Motor Can Run For Years On A Coin Cell

Can you run an electric motor for two years on a single lithium coin cell? [IamWe] figured out how to do it, and even though his donut motor doesn’t look like any motor we’ve ever seen before, it’s a pretty solid lesson in low-current design.

The donut motor is really just a brushless DC motor with a sign-pole stator and a multi-pole rotor. The frame of the motor is built from a styrofoam donut, hence the motor’s name. The rotor is a styrofoam sphere with neodymium magnets embedded around its equator. A sharpened bicycle spoke serves as an axle, and clever magnetic bearings provide near-zero friction rotation. The stator coil comes from an old solenoid and is driven by a very simple two-transistor oscillator. [IamWe]’s calculations show that the single CR2032 coin cell should power this motor for over two years. This one looks easy enough to whip up that it might make a nice project for a long winter’s night. Watch it spin in the video below.

This one seems like a perfect entry for the Coin Cell Challenge contest. Sure, it may not be a coin cell jump starter for your car, but our guess is this motor will still be spinning in 2020, and that’s no mean feat.

Continue reading “Low-Power Motor Can Run For Years On A Coin Cell”

Powder Coating With A Fluidized Bed

There’s no beating the beauty and durability of a high-quality powder-coated part. There’s just something about the look and feel of the finish that goes far beyond mere painting and makes it worth the effort and expense. The typical electrostatic spray powder-coating setup can be expensive, though, and not necessarily suitable for every workpiece.

Enter the fluidized-bed powder coating chamber, perfect for limited runs of small parts, and the brainchild of [Andrew Mayhall]. With a business providing furniture kits based on iron pipe, [Andrew] needed a way to finish flanges and fittings, and powder coating provided the best look. The fluidizer he built is a great alternative to spray coating; it blows air through a bed of fine thermoplastic granules, which causes them to act like a fluid. It’s similar to the fluidized-bed hot tub we recently featured, but on a much smaller scale and with different requirements based on the ultrafine particle size and aggregation properties of the powder. [Andrew] had to add mechanical agitation to achieve a homogeneous fluid bed, and after much experimentation he’s now able to dip preheated parts into the bed and achieve one-step powder coating. The video after the break shows some of the operational details.

Does electrostatic powder-coating sound like more of your thing? No problem – DIY solutions abound, and a homebrew oven to bake your parts may be as close as the nearest file cabinet.

Continue reading “Powder Coating With A Fluidized Bed”

Floating Death Star Is Just In Time

Unless you’ve been living under a high voltage transformer, you’re aware of the latest release in the Star Wars Saga.  [John] has a relative that is clearly a big Star Wars fan, so he set about to build them the perfect Christmas present – a levitating Death Star! Instead of reinventing the wheel, [John] decided to start off with a magnetically levitating model of the Earth –  a globe. He then took a Death Star mood lamp and gracefully cut it half with his trusty Dremel.

A nice twist for the mood lamp is that it was powered by a hacker’s best friend – five volts from a USB power supply. This made it easy to wire in a LiPo battery along with a charger and some fiber optic lighting.  A pile of cat litter to represent a smoldering planet blown to bits ties the whole build together as only cat litter can.

Be sure to visit [John’s] Instructable page for full details along with a video, which you can also see below.

Read Home Power Meters With RTL-SDR

[k-roy] hates electricity. Especially the kind that can be lethal if you’re not careful. Annoyed by the constant advertisements for the popular Sense Home Energy monitors (which must be installed in the main breaker box by an electrician), [k-roy] set out to find a cheaper and easier way. He wondered how the power company monitored his meter, and guessed correctly that it must be transmitting the information wirelessly. Maybe he could just listen in?

Using a cheap RTL-SDR, it didn’t take long for [k-roy] to tap into this transmission and stumbled across the power readings for his entire neighborhood using a simple command:

~/gocode/bin/rtlamr -msgtype=idm --format=json -msgtype=scm+

Ironically, the hardest part wasn’t snooping on everyone’s power and water usage patterns in the neighborhood, it was trying to figure out which meter was his. In the end, he was able to make some nice graphical layouts of the data with PHP.

We’ve seen some righteous power meter hacks in our time, but this one stands out for its simplicity and elegance. Be sure to check out [k-roy’s] blog for more details, and [rtlamr’s] github for the program used to read the meters.

Thanks to [Jasper J] for the tip!