Dumping Arcade ROMs The Hard Way

Nostalgia is a funny thing. That desire we all get to relive past memories can make you do things that in any other scenario would be out of the question. The effect seems even stronger when it comes to old video games. How else can you explain buying the same games over and over every time they get “remastered” for the next generation of consoles? But what if those remasters aren’t good enough?

If you have a burning desire to play a 100% accurate version of certain old arcade games, you might have your work cut out for you. Getting precise ROMs from some of these machines is exceptionally difficult, and as explained on the [CAPS0ff] blog, sometimes requires nearly superhuman feats of engineering.

As explained in the blog post, less invasive methods of getting inside the Taito C-Chip had already been examined and come up lacking. Despite best efforts, sending the unlock command to the chip didn’t yield the desired effect. If you can’t read the ROM the usual way, you need to get a little creative.

The process starts by milling down the case of the chip until the integrated circuit is just starting to become visible. Then acid is used to fully expose the traces. The traces are then tinned, and some very fine soldering is done to get the chip wired up to the reader. All told it takes about three hours from start to finish to pull a ROM using this method. But it’s all worth it in the end when you can play that 100% accurate version of Rainbow Islands. Or so we’ve been told.

If you couldn’t tell, this isn’t the first time a chip has been flayed open like this on the [CAPS0ff] blog.

DRM Workarounds Save Arcade Cabinet

DRM has become a four-letter word of late, with even media companies themselves abandoning the practice because of how ineffective it was. DRM wasn’t invented in the early 2000s for music, though. It’s been a practice on virtually everything where software is involved, including arcade cabinets. This is a problem for people who restore arcade machines, and [mon] has taken a swing at unraveling the DRM for a specific type of Konami cabinet.

The game in question, Reflec Beat, is a rhythm-based game released in 2010, and the security is pretty modern. Since the game comes with a HDD, a replacement drive can be ordered with a security dongle which acts to decrypt some of the contents on the HDD, including the game file and some other information. It’s not over yet, though. [mon] still needs to fuss with Windows DLL files and a few levels of decryption and filename obfuscation before getting the cabinet functional again.

The writeup on this cabinet is very detailed, and if you’re used to restoring older games, it’s a bit of a different animal to deal with than the embedded hardware security that older cabinets typically have. If you’ve ever wanted to own one of these more modern games, or you’re interested in security, be sure to check out the documentation on the project page. If your tastes are more Capcom and less Konami, check out an article on their security system in general, or in de-suiciding boards with failing backup batteries.

Push Buttons, Create Music With A MIDI Fighter

Musicians have an array of electronic tools at their disposal to help make music these days. Some of these are instruments in and of themselves, and [Wai Lun] — inspired by the likes of Choke and Shawn Wasabi — built himself a midi fighter

Midi fighters are programmable instruments where each button can be either a note, sound byte, effect, or anything else which can be triggered by a button. [Lun]’s is controlled by an ATmega32u4 running Arduino libraries — flashed to be recognized as a Leonardo — and is compatible with a number of music production programs. He opted for anodized aluminum PCBs to eliminate flex when plugging away and give the device a more refined look. Check it out in action after the break!

Continue reading “Push Buttons, Create Music With A MIDI Fighter”

DIY Diner Booth With Cocktail Table Arcade

[Glennzo] has a house with some odd interior design choices. The most glaring one is a living room/den complete with a green Jacuzzi hot tub straight out of the 1980s. The tub really didn’t fit with [Glennzo’s] plan to use the space as a bar and game room, so out came the Sawzall and demo hammer. The tub was in its own little alcove, possibly a converted closet. [Glennzo’s] turned the space into a restaurant style booth complete with a cocktail arcade table.

The fiberglass tub was relatively easy to cut up and remove. This left the wood framed tile tub surround. The surround was extended to become a booth seat. A bit of creative woodworking, some vinyl cushions, and the booth itself was ready. But what good is a booth without a table?

The cocktail table arcade machine is powered by a mini-tower running MAME. The monitor is an old 21″ LCD. The frame of the table is plywood and pine lumber, finished with stain and polyurethane. The illuminated buttons and interface came from an arcade control kit, which made wiring a snap. The table is topped off with a custom 3/8″ thick piece of glass.

The final product looks great and fits the room perfectly. Now [Glennzo] just needs a BarBot to finish off the perfect hacker and gamer paradise!

Hack Together A Whack-A-Mole In A Box!

Here’s a project that you can throw together in an afternoon, provided you have the parts on hand, and is certain to entertain. Hackaday.io user [SunFounder] walks us through the process of transforming a humble cardboard box into a whack-a-mole game might be just the ticket to pound out some stress or captivate any children in the vicinity.

A multi-control board and nine arcade buttons are the critical pieces of hardware here, with wires and a USB cable rounding out  the rest of the electronics. Separate the button core from the upper shell, mounting the shell in the box, and connect the button core’s LED cathode to the button’s ON terminal. Repeat eight times. Solder the buttons in parallel and add some more wire to the buttons’ ON terminals to extend their reach. Repeat eight more times.

Place the finished LED+cores into the buttons and connect their ON terminals to their respective buttons on the multi control board. Now for the hard step: use a mini-USB to USB cable to connect the controller to a computer you want to use to run the game’s code in the Arduino IDE. Modify the key-mappings and away you go! Check out the build video after the break.

Continue reading “Hack Together A Whack-A-Mole In A Box!”

Oh No! It’s The Claw Again!

[Ryan Bates] apparently really likes building claw machines. We noticed his latest build with a new PCB, but then we scrolled down and found other incarnations of the machine going back to 2015.

The laser-cut claw is interesting looking and the brains are an Arduino. You can see the action in the video below and there are plenty of older videos on the project page.

Continue reading “Oh No! It’s The Claw Again!”

Hardware Heroes: Tim Hunkin

If you were an engineering student around the end of the 1980s or the start of the 1990s, your destiny most likely lay in writing 8051 firmware for process controllers or becoming a small cog in a graduate training scheme at a large manufacturer. It was set out for you as a limited set of horizons by the university careers office, ready for you to discover as only a partial truth after graduation.

But the chances are that if you were a British engineering student around that time you didn’t fancy any of that stuff. Instead you harboured a secret dream to be [Tim Hunkin]’s apprentice. Of course, if you aren’t a Brit, and maybe you are from a different generation, you’ll have responded quizzically to that name. [Tim Hunkin]? Who?

[Tim Hunkin] is a British engineer, animator, artist and cartoonist who has produced a long series of very recognisable mechanical devices for public display, including clocks, arcade machines, public spectacles, exhibits and collecting boxes for museums, and much more. He came to my attention as an impressionable young engineer with his late 1980s to early 1990s British TV series  The Secret Life Of Machines, in which he took everyday household and office machines and appliances and explained and deconstructed them in an accessible manner for the public.

Continue reading “Hardware Heroes: Tim Hunkin”