Behold A DIY VR Headset Its Creator Will “Never” Build Again

Unsatisfied with commercial VR headset options, [dragonskyrunner] did what any enterprising hacker would: gathered parts over time and ultimately made their own. Behold the Hades Widebody (HWD), a DIY PC VR headset that aims for a wide field of view and even manages to integrate some face and eye tracking.

The Fresnel elements hugging the primary lenses provide a way of extending the display into the wearer’s peripheral vision.

[dragonskyrunner] is — and we quote — “NEVER building one of these again.” The reason is easily relatable to anyone who has spent a lot of time and effort creating something special: it does the job it was created for, but it also has limitations and is a lot of work. If one were to do it all over again, there would be a host of improvements and changes to consider. But one won’t be doing it all over again any time soon because it’s done now.

The good news is that [dragonskyrunner] made an effort to document things, so there is at least a parts list and enough details for any suitably motivated hacker to replicate the work and perhaps even put their own spin on it.

The Hades Widebody has a dual-lens arrangement and wide displays that aim to provide a wider field of view than most setups allow. There’s a main lens in front of the user’s eyes and a cut Fresnel lens providing a sort of extension to the side. [dragonskyrunner] claims that while there is certainly not a seamless transition between the lens elements, it does a better job than an Ambilight at providing a sense of visuals extending into the wearer’s peripheral vision.

The DIY spirit of making a piece of hardware to suit one’s own needs is exactly the sort of thing that would fit into our 2023 Cyberdeck content, and while a headset by itself isn’t quite enough to qualify (devices must have some form of usable input and output), it just might get those creative juices flowing.

IKEA LACK Table Becomes Extremely Affordable DIY Copy Stand

A copy stand is a tool used to capture images of photos, artwork, books, and things of a similar nature. It holds a camera perpendicular to a large and flat surface, upon which the subject rests.

A threaded rod provides effective vertical adjustment.

They are handy, but there’s no need to spend a lot when [BlandPasta]’s DIY copy stand based on a cheap IKEA LACK table can be turned into an economical afternoon project with the help of simple hardware and a few 3D printed parts.

The main structure comes from a mixture of parts from two LACK tables: one small and one normal-sized. A tabletop is used as the bed, and the square legs make up the structural parts with the help of some printed pieces. A threaded rod combined with some captive hardware provides a way to adjust the camera up and down with a crank, while one can manually slide the horizontal camera mount as needed to frame the subject appropriately.

This is a clever remix of IKEA parts, and the somewhat matte white finish of the LACK complements photography well. Adding some DIY LED lighting is about all it takes to get a perfectly serviceable copy stand that won’t break the bank.

Ask Hackaday: What’s Your “Tactical Tool” Threshold?

With few exceptions, every field has a pretty modest set of tools that would be considered the minimum for getting most jobs done. A carpenter can make do with tools that would fit in a smallish bag, while a mechanic can handle quite a few repairs with a simple set of socket wrenches and other tools. Even in electronics, a lot of repairs and projects can be tackled with little more than a couple of pairs of pliers, some cutters, and a cheap soldering iron.

But while the basic kit of tools for any job may be enough, there will always be those jobs that need more tools. Oh sure, sometimes you can — and should — make do with what you’ve got; I can’t count the number of times I’ve used an elastic band wrapped around the handles of a pair of needlenose pliers as an impromptu circuit board vise. But eventually, you’re going to come upon a situation where only the “real” tool will do, and substitutes need not apply.

As I look around my shop and my garage, I realize that I may have a problem with these “tactical tool” purchases. I’ve bought so many tools that I’ve used far fewer times than I thought I would, or perhaps even never used, that I’m beginning to wonder if I tackle projects just as an excuse to buy tools. Then again, some of my tactical purchases have ended up being far more useful than I ever intended, which has only reinforced my tendency toward tool collecting. So I thought I’d share a few of my experiences with tactical tools, and see how the community justifies tactical tool acquisitions.

Continue reading “Ask Hackaday: What’s Your “Tactical Tool” Threshold?”

Mat Boards Are Spendy, So DIY CNC Tool To The Rescue

Mats are flat pieces of paper-based material that fill the space between a frame and the art within. They perform a number of aesthetic and practical functions, and they can also be expensive to purchase. Making them by hand is an option, but it’s an exacting process. [wooddragon48] felt that a CNC solution would serve this need nicely, and began designing a DIY CNC tool to do exactly that.

One of the tricky parts about cutting mat boards is that cuts are at an angle, and there is really no tolerance for overcuts or any kind of visual blemish. CNC control would seem to offer a great solution to both the need for precisely straight cuts, as well as fine control over where cuts begin and end in a way that opens the door to complex designs that would be impractical to do by hand.

[wooddragon48]’s design has an angled cutter designed to plunge perfectly on demand, surrounded by a ring — similar to that on a router — which ensures the cutting tool is always consistently positioned with the material. It’s still in the design phase, but this is a type of tool that doesn’t yet exist so far as we can tell. The ability to CNC cut mat board, especially in complex designs, would be a huge timesaver.

Art and DIY CNC have a long history of happy intersection, as we have seen with a CNC router repurposed for string art, a CNC painting robot, and even an interactive abstract sculpture generator.

Hack Simple

Here at Hackaday, we definitely love to celebrate the hard hacks: the insane feats of reverse engineering, the physics-defying flights of fancy, or the abuse of cutting edge technology. But today I’d like to raise a rhetorical glass in tribute of the simple hacks. Because, to be perfectly honest, the vast majority of my hacks are simple hacks, and it’s probably the same for you too. And these often go unsung because, well, they’re simple. But that doesn’t mean that something simple can’t be helpful.

Case in point: an ESP8266 press-buttons device that we featured this week. It doesn’t do much. It’s main feature is that it connects to a home automation network over WiFi and enables you to flip three relays. Wires coming off the board are to be soldered to the not-yet-smart device in question, simply connected to each side of the button you’d like to press. In the example, a coffee machine was turned on and the “go” button pressed, automating one of the most essential kitchen rituals. While recording the podcast, I realized that I’ve built essentially this device and have it controlling our house’s heating furnace.

For the experienced hacker, there’s not much here. It’s a simple board design, the software heavily leverages ESPHome, so there’s not much work on that front either. But imagine that you lacked any of the wide-ranging skills that it takes to make such a device: PCB layout, ESP8266 software wrangling, or the nuances of designing with relays. You could just as easily build this device wrong as right. The startup costs are non-trivial.

Making a simple design like this available to the public isn’t a technical flex, and it’s not contributing to the cutting edge. But it just might be giving someone their first taste of DIY home automation, and a sweet taste of success. There’s not much easier than finding a switch and soldering on two wires, but if that’s the spark that pushes them on their path to greater hacks, that’s awesome. And even if it doesn’t, at least it’s another appliance under user control, connected to a private WiFi network rather than spying you out and phoning home to Big Toaster.

So here’s to the simple hacks!

Hackaday Prize 2023: Hearing Sirens When Drivers Can’t

[Jan Říha]’s PionEar device is a wonderful entry to the Assistive Tech portion of the 2023 Hackaday Prize. It’s a small unit intended to perch within view of the driver in a vehicle, and it has one job: flash a light whenever a siren is detected. It is intended to provide drivers with a better awareness of emergency vehicles, because they are so often heard well before they are seen, and their presence disrupts the usual flow of the road. [Jan] learned that there was a positive response in the Deaf and hard of hearing communities to a device like this; roads get safer when one has early warning.

Deaf and hard of hearing folks are perfectly capable of driving. After all, not being able to hear is not a barrier to obeying the rules of the road. Even so, for some drivers it can improve awareness of their surroundings, which translates to greater safety. For the hearing impaired, higher frequencies tend to experience the most attenuation, and this can include high-pitched sirens.

The PionEar leverages embedded machine learning to identify sirens, which is a fantastic application of the technology. Machine learning, after all, is a way to solve the kinds of problems that humans are not good at figuring out how to write a program to solve. Singling out the presence of a siren in live environmental audio definitely qualifies.

We also like the clever way that [Jan] embedded an LED light guide into the 3D-printed enclosure: by making a channel and pouring in a small amount of white resin intended for 3D printers. Cure the resin with a UV light, and one is left with an awfully good light guide that doubles as a diffuser. You can see it all in action in a short video, just under the page break.

Continue reading “Hackaday Prize 2023: Hearing Sirens When Drivers Can’t”

The Peak Of Vacuum Tube Radio Design

One of the more popular trends in the ham radio community right now is operating away from the shack. Parks on the Air (POTA) is an excellent way to take a mobile radio off-grid and operate in the beauty of nature, but for those who want to take their rig to more extreme locations there’s another operating award program called Summits on the Air (SOTA) that requires the radio operator to set up a station on a mountaintop instead. This often requires lightweight, low-power radios to keep weight down for the hike, and [Dan] aka [AI6XG] has created a radio from scratch to do just that.

[Dan] is also a vacuum tube and CW (continuous wave/Morse code) operator on top of his interest in summiting various mountains, so this build incorporates all of his interests. Most vacuum tubes take a lot of energy to operate, but he dug up a circuit from 1967 that uses a single tube which can operate from a 12 volt battery instead of needing mains power, thanks to some help from a more modern switch-mode power supply (SMPS). The SMPS took a bit of research, though, in order to find one that wouldn’t interfere with the radio’s operation. That plus a few other modern tweaks like a QCX interface and a switch to toggle between receive to transmit easily allows this radio to be quite versatile when operating while maintaining its portability and durability when summiting.

For those looking to replicate a tube-based radio like this one, [Dan] has made all of the schematics available on his GitHub page. The only other limitation to keep in mind with a build like this is that it tends to only work on a very narrow range of frequencies without adding further complexity to the design, in this case within the CW portion of the 40-meter band. But that’s not really a bad thing as most radios with these design principles tend to work this way. For some other examples, take a look at these antique QRP radios for operating using an absolute minimum of power.