A Farmer’s Guide To Technology

One of the hardest aspects of choosing a career isn’t getting started, it’s keeping up. Whether you’re an engineer, doctor, or even landscaper, there are always new developments to keep up with if you want to stay competitive. This is especially true of farming, where farmers have to keep up with an incredible amount of “best practices” in order to continue being profitable. Keeping up with soil nutrient requirements, changing weather and climate patterns, pests and other diseases, and even equipment maintenance can be a huge hassle.

A new project at Hackerfarm led by [Akiba] is hoping to take at least one of those items off of farmers’ busy schedules, though. Their goal is to help farmers better understand the changing technological landscape and make use of technology without having to wade through all the details of every single microcontroller option that’s available, for example. Hackerfarm is actually a small farm themselves, so they have first-hand knowledge when it comes to tending a plot of land, and [Bunnie Huang] recently did a residency at the farm as well.

The project strives to be a community for helping farmers make the most out of their land, so if you run a small farm or even have a passing interest in gardening, there may be some useful tools available for you. If you have a big enough farm, you might even want to try out an advanced project like an autonomous tractor.

Fluorescence Microscope On A Hacker’s Budget

Some of biology’s most visually striking images come from fluorescence microscopes. Their brilliant colors on black look like a neon sign from an empty highway. A brand new fluorescence microscope is beyond a hacker’s budget and even beyond some labs’, but there are ways to upgrade an entry-level scope for the cost of a few cups of coffee. [Justin Atkin] of The Thought Emporium published a scope hacking video which can also be seen below. He is becoming a reputed scope modder.

This video assumes a couple of things for the $10 price tag. The first premise is that you already have a scope, a camera adapter, and a camera capable of shooting long exposures. The second premise is that you are willing to break the seals and open the scope to make some reversible mods. Since you are reading Hackaday, maybe that is a given.

The premise is simple compared to the build, which is not rocket surgery, the light source from below illuminates the subject like a raver, and the filter removes any light that isn’t spectacular before it gets to the camera.

Continue reading “Fluorescence Microscope On A Hacker’s Budget”

There Are 200 Electronic Kits In That Box

If you grew up in the latter part of the 20th century, you didn’t have the Internet we have today — or maybe not at all. What you did have, though, was Radio Shack within an hour’s drive. They sold consumer electronics, of course, but they also sold parts and kits. In addition to specific kits, they always had some versions of a universal kit where lots of components were mounted on a board and you could easily connect and disconnect them to build different things. [RetoSpector78] found a 200-in-1 kit at a thrift store that was exactly like the one he had as a kid and he shares it with us in the video below.

This was a particularly fancy model since it has a nice looking front panel with a few knobs and displays. The book shows you how to make the 200 different projects ranging from metronomes to rain detectors. The projects really fell into several categories. There were practical circuits like radio receivers, test equipment, and transmitters. Then there were games or circuits even the manual called “silly.” In addition, there were circuits to build simply to understand how they work, like flip flops or counters.

Continue reading “There Are 200 Electronic Kits In That Box”

Spectrometer Is Inexpensive And Capable

We know the effect of passing white light through a prism and seeing the color spectrum that comes out of the other side. It will not be noticeable to the naked eye, but that rainbow does not fully span the range of [Roy G. Biv]. There are narrowly absent colors which blur together, and those missing portions are a fingerprint of the matter the white light is passing through or bouncing off. Those with a keen eye will recognize that we are talking about spectrophotometry which is identifying those fingerprints and determining what is being observed and how much is under observation. The device which does this is called a spectrometer and [Justin Atkin] invites us along for his build. Video can also be seen below.

Along with the build, we learn how spectrophotometry works, starting with how photons are generated and why gaps appear in the color spectrum. It is all about electrons, which some of our seasoned spectrometer users already know. The build uses a wooden NanoDrop style case cut on a laser engraver. It needs some improvements which are mentioned and shown in the video so you will want to have some aluminum tape on hand. The rest of the bill of materials is covered including “Black 2.0” which claims to be the “mattest, flattest, black acrylic paint.” Maybe that will come in handy for other optical projects. It might be wise to buy first surface mirrors cut to size, but you can always make bespoke mirrors with carefully chosen tools.

Continue reading “Spectrometer Is Inexpensive And Capable”

Biology Lab On Your Christmas List

We hope you have been good this year because we have a list to start your own biology lab and not everything will fit into Santa’s bag (of holding). If you need some last minute goodie points, Santa loves open-source and people who share on our tip line. Our friends at [The Thought Emporium] have compiled a list of the necessary equipment for a biology lab. Chemistry labs-in-a-box have been the inspiration for many young chemists, but there are remarkable differences between a chemistry lab and a biology lab which are explained in the Youtube video linked above and embedded after the break.

If you are preparing to start a laboratory or wondering what to add to your fledging lab, this video is perfect. It comes from the perspective of a hacker not afraid to make tools like his heat block and incubator which should absolutely be built rather than purchased but certain things, like a centrifuge, should be purchased when the lab is mature. In the middle we have the autoclave where a used pressure cooker may do the trick or you may need a full-blown commercial model with lots of space and a high-pressure range.

Maybe this will take some of the mystique out of starting your own lab and help you understand what is happening with a gel dock or why a spectrophotometer is the bee’s knees. There are a handful of other tools not mentioned here so if this is resonating, it will be worth a watch.

Continue reading “Biology Lab On Your Christmas List”

Open Source Laboratory Rocker Is Super Smooth

Lab equipment is often expensive, but budgets can be tight and not always up to getting small labs or researchers what they need. That’s why [akshay_d21] designed an Open Source Lab Rocker with a modular tray that uses commonly available hardware and 3D printed parts. The device generates precisely controlled, smooth motion to perform automated mild to moderately aggressive mixing of samples by tilting the attached tray in a see-saw motion. It can accommodate either a beaker or test tubes, but since the tray is modular, different trays can be designed to fit specific needs.

Source code and schematics are available from [akshay_d21]’s Google Drive and the 3D models are also available from the National Institute of Health’s 3D Print Exchange. A demonstration video is embedded below, in which you can see how smooth and controlled the motions are.

Continue reading “Open Source Laboratory Rocker Is Super Smooth”

DIY Cryogel Sustains Live Cells

We like to think our readers are on the cutting edge. With the advent of CRISPR kits at home and DIY bio blooming in workshops across the world, we wanted to share a video which may be ahead of its time. [The Thought Emporium] has just shown us a way to store eukaryotic cells at room temperature. His technique is based on a paper published in Nature which he links to from the YouTube page, but you can see his video after the break.

Eukaryotic cells, the kind we are made of, have been transported at low temperatures with techniques like active refrigeration, liquid nitrogen, and dry ice but those come with a host of problems like cost, convenience, and portability. Storing the cells with cryogel has been shown to reliably keep the cells stable for up to a week at a time and [The Thought Emporium] made some in his homemade freeze-dryer which he’s shown us before. The result looks like a potato chip, but is probably less nutrious than astronaut ice cream.

If cell transport doesn’t tickle your fancy, cryogel is fascinating by itself as a durable, lightweight insulator similar to Aerogel. You can make Aerogel at home too.
Continue reading “DIY Cryogel Sustains Live Cells”