Protect Your Batteries Before You Wreck Your Batteries

[Jan] is solving a problem many of us have had, deeply discharging our project’s batteries and potentially damaging the cells.

His board can handle batteries from 6 to 34 volts and supports both LiPo or Lion batteries. The board can be flexible about its cut-off voltage. It also has a feature we really like; the user can set a delay before it shuts off the battery: useful in cases where a heavy peak current draw causes the battery to operate at a lower-than-threshold voltage for a few seconds. Once the board is shut down it takes a manual reset to allow power to be drawn again.

His latest iteration of the board is an impressive 1 sq. inch in size! This can fit in just about any project and it’s even flexible in the choice of battery connector. Next time we have a high current draw project with expensive batteries or maybe a monitoring device that’s expected to run a long time we may throw one of these boards in there just to be safe.

Gutted Hoverboard Becomes Formidable Track-Drive Robot

When “hoverboards” first came out, you may have been as disappointed as we were that they did not even remotely fulfill the promises of Back to the Future II. Nothing more than a fancified skateboard, hoverboards are not exactly groundbreaking technology. That doesn’t mean they’re not useful platforms for hacking, though, as this hoverboard to track-propelled robot tank conversion proves.

Most of the BOM for this build came from the junk bin – aluminum extrusions, brackets, and even parts cannibalized from a 3D-printer. But as [pasoftdev] points out, the new-in-box hoverboard was the real treasure trove of components. The motors, the control and driver electronics, and the big, beefy battery were all harvested and mounted to the frame. To turn the wheels into tracks, [pasoftdev] printed some sprockets to fit around the original tires. The tracks were printed in sections and screwed to the wheels. Idlers were printed in sections too, using central hubs and a clever method for connecting everything together into a sturdy wheel. Printed tank tread links finished the rolling gear eventually; each of the 34 pieces took almost five hours to print. The dedication paid off, though, as the 15-kg tank is pretty powerful; the brief video below shows it towing an office chair around without any problems.

We noticed that [pasoftdev] found the assembly of the tread links a bit problematic. These 3D-printed links that are joined by Airsoft BBs might make things a little easier next time.

Continue reading “Gutted Hoverboard Becomes Formidable Track-Drive Robot”

Better Battery Management Through Chemistry

The lead-acid rechargeable battery is a not-quite-modern marvel. Super reliable and easy to use, charging it is just a matter of applying a fixed voltage to it and waiting a while; eventually the battery is charged and stays topped off, and that’s it. Their ease is countered by their size, weight, energy density, and toxic materials.

The lithium battery is the new hotness, but their high energy density means a pretty small package that can get very angry and dangerous when mishandled. Academics have been searching for safer batteries, better charge management systems, and longer lasting battery formulations that can be recharged thousands of times, and a recent publication is generating a lot of excitement about it.

Consider the requirements for a battery cell in an electric car:

  • High energy density (Lots of power stored in a small size)
  • Quick charge ability
  • High discharge ability
  • MANY recharge cycles
  • Low self-discharge
  • Safe

Lithium ion batteries are the best option we have right now, but there are a variety of Li-ion chemistries, and depending on the expected use and balancing and charging, different chemistries can be optimized for different performance characteristics. There’s no perfect battery yet, and conflicting requirements mean that the battery market will likely always have some options.

Continue reading “Better Battery Management Through Chemistry”

Replacement Batteries For The Sony Discman

Some of the first Sony Discmans included rechargeable batteries. These batteries were nickel metal hydride batteries (because of the technology of the time) and are now well past their service life. The new hotness in battery technology is lithium — it offers greater power density, lighter weight, and a multitude of ready-to-go, off the shelf cells. What if someone were to create a new battery pack for an old Sony Discman using lithium cells? That’s exactly what [sjm4306] did for their entry into this year’s Hackaday Prize.

The Discman [sjm] is working with uses a custom, Sony-branded battery based on NiMH technology with a capacity of around 500 mAH. After carefully measuring the dimensions of this battery, it was replicated in plastic with a 3D printer. This enclosure was then stuffed with a small lithium cell scavenged from a USB power bank.

The only tripping points for this build were the battery contacts. The originally battery had two contacts on the end that fit the Discman exactly; these were replicated with a small PCB wired up to the guts of the USB powerbank. The end result is a direct, drop-in replacement for the original Discman battery with a higher capacity, that’s also rechargeable via USB. It’s a fantastic project, with the entire build video available below.

Continue reading “Replacement Batteries For The Sony Discman”

Charge All Your Batteries With USB PD

USB-C has been around for a while, and now that it can charge phones and Macbooks and Thinkpads, the hackers are starting to take note of power adapters that can supply lots of current. [Alex] was turned on to USB-C after he charged a laptop, Nintendo Switch, and phone with one power adapter. This led him to create a USB-C battery charger for all your LiPos.

The high-level design of this project is simply a board with a USB C port on one end, an XT60 plug on the other, and some support for balance leads. Plug this board into a USB C adapter, plug a battery in, and the battery will charge automagically. The only UI is an RGB LED. It’s difficult to imagine a battery charger that’s easier to use.

For the electronics, [Alex] is using an STM32G0 for the smarts of the device, which includes handling the USB PD spec. This gives the charger 20 Volts to play with, and this is then regulated and sent into the battery. Right now, this board will charge 2-4c batteries. That’s a good enough proof of concept to charge some quadcopter batteries, or just as a really simple way to charge some LiPo cells.

Simple Timer Evolves Into Custom Kid’s Watch

Sporting a new wristwatch to school for the first time is a great moment in a kid’s life. When it’s a custom digital-analog watch made by your dad, it’s another thing altogether.

As [Chris O’Riley] relates, the watch he built for his son [Vlad] started out as a simple timer for daily toothbrushing, a chore to which any busy lad pays short shrift unless given the proper incentive. That morphed into an idea for a general purpose analog timepiece with LEDs taking the place of hands. [Chris] decided that five-minute resolution was enough for a nine-year-old, which greatly reduced the number of LEDs needed. An ATtiny841 tells a 28-channel I2C driver which LEDs to light up, and an RTC chip keeps [Vlad] on schedule. The beautiful PCB lives inside a CNC machined aluminum case; we actually commented to [Chris] that the acrylic prototype looked great by itself, but [Vlad] wanted metal. The watch has no external buttons; rather, the slightly flexible polycarbonate crystal bears against a PCB-mounted pushbutton to control functions.

With a snappy wristband, [Vlad] will be rolling fancy on the schoolyard. It’s a great looking piece that needed a wide range of skills to execute, as all watches do. Check out some other watch builds, like this lovely pure analog, another digital-analog hybrid, or this pocket watch that packs an Enigma machine inside.

Continue reading “Simple Timer Evolves Into Custom Kid’s Watch”

Plug Your Ears And Hop On This Jet-Powered EBike

Ah, the simple pleasures of a bike ride. The rush of the wind past your ears, the gentle click of the derailleurs as you change gears, the malignant whine of the dual electric jet turbines pushing you along. Wait, what?

Yes, it’s a jet bike, and its construction was strictly a case of “Why not?” for [Tech Ingredients]. They recently finished up a jet engine build using a hybrid design with electric ducted fans as compressors and fueled with propane. It was quite a success, and pretty spectacular, but left an embarrassment of riches upon its passing in terms of spare parts. The ducted fans, monstrous 90-mm 12s beasts, along with dual 150A ESCs found their way onto a mountain bike by way of a rear luggage rack. Pannier bags on each side hold the batteries, and a quick control panel went on the handlebar. The video below shows the build details and a couple of test rides, which show just how fast you can go with this setup. It may not be very practical compared to a more traditional hub motor, but it’s nowhere near as cool. Just be sure to wear your hearing protection.

Is this the first jet engine on a bike we’ve featured? Of course not. But for an impromptu build, it’s pretty impressive. Continue reading “Plug Your Ears And Hop On This Jet-Powered EBike”