Free Refrigeration In Hot Climates

Passive homes are a fairly recent trend in home building, but promise a future with minimal energy inputs in our day-to-day. One of the challenges in this year’s Hackaday Prize is to envision ways to add utility to earthen homes often used in refugee camps where there is a housing crisis. Adding passive utilities to these adobe buildings would be a fantastic upgrade, so [Cat] decided to tackle the challenge by creating a refrigerator that needs no electricity.

The the plan for the device works by using evaporative cooling to reduce the temperature in a small box which can be used for food storage. Of course, using evaporative cooling means that you need ready access to water and it likely won’t work in a humid or cool environment, but systems like these have been in use for centuries in plenty of places around the world. [Cat]’s plan is a little more involved than traditional methods of evaporative cooling though, and makes use of a specially painted chimney which provides the airflow when heated by sunlight.

The project is still in its infancy but it would be interesting to see a proof-of-concept built in a real-life passive house in an arid environment. Unfortunately, those of us in humid (or tropical) environments will have to look elsewhere for energy-efficient cooling solutions.

Keep An Eye On The Neighborhood With This Passive Radar

If your neighborhood is anything like ours, walking across the street is like taking your life in your own hands. Drivers are increasingly unconcerned by such trivialities as speed limits or staying under control, and anything goes when they need to connect Point A to Point B in the least amount of time possible. Monitoring traffic with this passive radar will not do a thing to slow drivers down, but it’s a pretty cool hack that will at least yield some insights into traffic patterns.

The principle behind active radar – the kind police use to catch speeders in every neighborhood but yours – is simple: send a microwave signal towards a moving object, measure the frequency shift in the reflected signal, and do a little math to calculate the relative velocity. A passive radar like the one described in the RTL-SDR.com article linked above is quite different. Rather than painting a target with an RF signal, it relies on signals from other transmitters, such as terrestrial TV or radio outlets in the area. Two different receivers are used, both with directional antennas. One points to the area to be monitored, while the other points directly to the transmitter. By comparing signals reflected off moving objects received by the former against the reference signal from the latter, information about the distance and velocity of objects in the target area can be obtained.

The RTL-SDR test used a pair of cheap Yagi antennas for a nearby DVB-T channel to feed their KerberosSDR four-channel coherent SDR, a device we last looked at when it was still in beta. Essentially four SDR dongles on a common board, it’s available now for $149. Using it to build a passive radar might not save the neighborhood, but it could be a lot of fun to try.

How 5G Is Likely To Put Weather Forecasting At Risk

If the great Samuel Clemens were alive today, he might modify the famous meteorological quip often attributed to him to read, “Everyone complains about weather forecasts, but I can’t for the life of me see why!” In his day, weather forecasting was as much guesswork as anything else, reading the clouds and the winds to see what was likely to happen in the next few hours, and being wrong as often as right. Telegraphy and better instrumentation made forecasting more scientific and improved accuracy steadily over the decades, to the point where we now enjoy 10-day forecasts that are at least good for planning purposes and three-day outlooks that are right about 90% of the time.

What made this increase in accuracy possible is supercomputers running sophisticated weather modeling software. But models are only as good as the raw data that they use as input, and increasingly that data comes from on high. A constellation of satellites with extremely sensitive sensors watches the planet, detecting changes in winds and water vapor in near real-time. But if the people tasked with running these systems are to be believed, the quality of that data faces a mortal threat from an unlikely foe: the rollout of 5G cellular networks.

Continue reading “How 5G Is Likely To Put Weather Forecasting At Risk”

Power Over Ethernet Splitter Improves Negotiating Skills

Implementing PoE is made interesting by the fact that not every Ethernet device wants power; if you start dumping power onto any device that’s connected, you’re going to break things. The IEEE 802.3af standard states that the device which can source power should detect the presence of the device receiving power, before negotiating the power level. Only once this process is complete can the power sourcing device give its full supply. Of course, this requires the burden of smarts, meaning that there are many cheap devices available which simply send power regardless of what’s plugged in (passive PoE).

[Jason Gin] has taken an old, cheap passive PoE splitter and upgraded it to be 802.3af compatible (an active device). The splitter was designed to be paired with a passive injector and therefore did not work with Jason’s active 802.3at infrastructure.

The brain of the upgrade is a TI TPS2378 Powered Device controller, which does the power negotiation. It sits on one of two new boards, with a rudimentary heatsink provided by some solar cell tab wire. The second board comprises the power interface, and consists of dual Schottky bridges as well a 58-volt TVS diode to deal with any voltage spikes due to cable inductance. The Ethernet transformer shown in the diagram above was salvaged from a dead Macbook and, after some enamel scraping and fiddly soldering, it was fit for purpose. For a deeper dive on Ethernet transformers and their hacked capabilities, [Jenny List] wrote a piece specifically focusing on Raspberry Pi hardware.

[Jason]’s modifications were able to fit in the original box, and the device successfully integrated with his 802.3at setup. We love [Jason]’s work and have previously written about his eMMC adventures, repairing windows tablets and explaining the intricacies of SD card interfacing.

Your Next Wearable May Not Need Electricity

What if you could unlock a door with your shirtsleeve, or code a secret message into your tie? This could soon be a thing, because researchers at the University of Washington have created a fabric that can store data without any electronics whatsoever.  The fabric can be washed, dried, and even ironed without losing data. Oh, and it’s way cheaper than RFID.

By harnessing the ferromagnetic properties of conductive thread, [Justin Chen] and [Shyam Gollakota] have  proved the ability to store bit strings and 2D images through magnetization. The team used an embroidery machine to lay down thread in dense strips and patches, and then coded in ones and zeros by rubbing the threads with N and S neodymium magnets.

They didn’t use anything special, either, just this conductive thread, some magnets, and a Nexus 5 to read the data. Any phone with a magnetometer (so, most of them) could decode this type of binary data. The threads stay reliably magnetized for about a week and then begin to weaken. However, their tests proved that the threads can be re-magnetized over and over.

The team also created 2D images with magnets on a 9-patch made of conductive fabric. The images can be decoded piecemeal by a single magnetometer, or all at once by an array of them. Finally, the team made a glove with a magnetized patch of thread on the fingertip. They were able to get the phone to recognize six unique gestures with 90% accuracy, even with the phone tucked away in a pocket. See it in action in their demo video after the break.

Magnetic memory is certainly not a new concept. But for the wearable technology frontier, it’s a novel one.

Continue reading “Your Next Wearable May Not Need Electricity”

Active Discussion About Passive Components

People talk about active and passive components like they are two distinct classes of electronic parts. When sourcing components on a BOM, you have the passives, which are the little things that are cheaper than a dime a dozen, and then the rest that make up the bulk of the cost. Diodes and transistors definitely fall into the cheap little things category, but aren’t necessarily passive components, so what IS the difference?

Continue reading “Active Discussion About Passive Components”

Passive Bluetooth Keyless Entry System

Modern smart keys allow you to keep the key fob in your pocket or purse while you simply grab the handle and tug the door open. [Phil] decided he would rather ditch the fob altogether and instead implemented a passive Bluetooth keyless entry system with his Android phone. It’s probably unlikely for car manufacturers to embrace phone-based keys anytime soon, and [Phil] acknowledges that his prototype poses a landslide of challenges. What he’s built, however, looks rather enticing. If the car and phone are paired via Bluetooth, the doors unlock. Walk out of range and the car automatically locks when the connection drops.

His build uses an Arduino Mega with a BlueSMiRF Silver Bluetooth board that actively searches for his phone and initiates a connection if in range.  Doors are unlocked directly through a 2-channel relay module, and an LED indicator inside the vehicle tells the status of the system. A pulsing light indicates it’s searching for the phone, while a solid ring means that a connection is established.

We hope [Phil] will implement additional features so we can make our pockets a bit lighter. Watch a video demonstration of his prototype after the break, then check out the flood of car-related hacks we’ve featured around here recently: the OpenXC interface that adds a smart brake light, or the Motobrain, which gives you Bluetooth control over auxiliary electrical systems.

Continue reading “Passive Bluetooth Keyless Entry System”