Disgusting Apple II Monitors Live Again

[The 8-Bit Guy] recently went to check out a stash of old Apple II Color monitors which had been sitting outside in a trash pile for 20 years, and decided to bring one home to restore. As you can see from the lead photo, they were dirty — really dirty. Surprisingly, the team of volunteers who discovered these monitors had fired them up, and every one of them works to some extent or another.

Check out the video below as he cleans up this filthy monitor and starts troubleshooting. You’ll chuckle aloud when he turns the circuit board over to desolder a mysterious diode, and when he flips the board back over, the diode has disappeared (it actually disintegrated into dust on his lab bench). For the curious, one commenter on YouTube found that it was a glass passivated and encapsulated fast recovery diode called a V19. There’s going to be a part 2, and we have every confidence that [The 8-Bit Guy] will succeed and soon add a shiny, like-new monitor to his collection.

If you’re a collector of old monitors, this demonstrates that they can survive quite a bit of abuse and exposure. We’re not sure that rummaging through your local landfill is the best idea, but if you run into an old monitor that has been exposed to the elements, don’t be so quick to dismiss it as a lost cause. Do you have any gems that you’ve restored from the trash? Let us know in the comments.

Continue reading “Disgusting Apple II Monitors Live Again”

Tales From The Sysadmin: Impending Hard Drive Doom

It should have been another fine day, but not all was well in paradise. Few things bring a creeping feeling of doom like a computer that hardlocks and then refuses to boot. The clicking sound coming from the tower probably isn’t a good sign either. Those backups are up to date, right? Right?

There are some legends and old stories about hard drive repair. One of my favorites is the official solution to stiction for old drives: Smack it with a mallet. Another trick I’ve heard repeatedly is to freeze a hard drive before trying to read data off of it. This could actually be useful in a couple instances. The temperature change can help with stiction, and freezing the drive could potentially help an overheating drive last a bit longer. The downside is the potential for condensation inside the drive. Don’t turn to one of these questionable fixes unless you’ve exhausted the safer options.

For the purpose of this article, we’ll assume the problem is the hard drive, and not another component like a power supply or SATA cable causing problems. A truly dead drive is a topic for another time, but if the drive is alive enough to show up as a block device when plugged in, then there’s hope for recovering the data. One of the USB to SATA cables available on your favorite online store is a great way to recover data. Another option is booting off a Linux DVD or flash drive, and accessing the drive in place. If you’re lucky, you can just copy your files and call it a day. If the file transfer fails because of the dying drive, or you need a full disk image, it’s time to pull out some tools and get to work. Continue reading “Tales From The Sysadmin: Impending Hard Drive Doom”

Let’s Talk About Elon Musk’s Submarine

When word first broke that Elon Musk was designing a kid-sized submarine to help rescue the children stuck in Thailand’s Tham Luang cave, it seemed like a logical thing for Hackaday to cover. An eccentric builder of rockets and rocket-launched electric sports cars, pushing his engineering teams and not inconsiderable financial resources into action to save children? All of that talk about Elon being a real life Tony Stark was about to turn from meme into reality; if the gambit paid off, the world might have it’s first true superhero.

With human lives in the balance, and success of the rescue attempt far from assured (regardless of Elon’s involvement), we didn’t feel like playing arm-chair engineer at the time. Everyone here at Hackaday is thankful that due to the heroics of the rescuers, including one who paid the ultimate price, all thirteen lives were saved.

Many said it couldn’t be done, others said even saving half of the children would have been a miracle. But Elon’s submarine, designed and built at a breakneck pace and brought to Thailand while some of the children were still awaiting rescue, laid unused. It wasn’t Elon’s advanced technology that made the rescue possible, it was the tenacity of the human spirit.

Now, with the rescue complete and the children well on their way to returning to their families, one is left wondering about Elon’s submarine. Could it have worked?

Continue reading “Let’s Talk About Elon Musk’s Submarine”

Hackaday Prize Entry: Modular, Rapid Deployment Power Station

After a disaster hits, one obvious concern is getting everyone’s power restored. Even if the power plants are operational after something like a hurricane or earthquake, often the power lines that deliver that energy are destroyed. While the power company works to rebuild their infrastructure, [David Ngheim]’s mobile, rapid deployment power station can help get people back on their feet quickly. As a bonus, it uses renewable energy sources for power generation.

The modular power station was already tested at Burning Man, providing power to around 100 people. Using sets of 250 Watt panels, wind turbines, and scalable battery banks, the units all snap together like Lego and can fit inside a standard container truck or even the back of a pickup for smaller sizes. The whole thing is plug-and-play and outputs AC thanks to inverters that also ship with the units.

With all of the natural disasters we’ve seen lately, from Texas to Puerto Rico to California, this entry into the Hackaday Prize will surely gain some traction as many areas struggle to rebuild their homes and communities. With this tool under a government’s belt, restoration of power at least can be greatly simplified and hastened.

EMMC To SD Hack Rescues Data From A Waterlogged Phone

How do I get the data off this destroyed phone? It’s a question many of us have had to ponder – either ourselves or for friends or family. The easy answer is either spend a mint for a recovery service or consider it lost forever.  [Trochilidae] didn’t accept either of those options, so he broke out the soldering iron and rescued his own data.

A moment’s inattention with a child near a paddling pool left [Trochilidae’s] coworker’s wife with a waterlogged, dead phone. She immediately took apart the phone and attempted to dry it out, but it was too late. The phone was a goner. It also had four months of photos and other priceless data on it. [Trochilidae] was brought in to try to recover the data.

The phone was dead, but chances are the data stored within it was fine. Most devices built in the last few years use eMMC flash devices as their secondary storage. eMMC stands for Embedded Multimedia Card. What it means is that the device not only holds the flash memory array, it also contains a flash controller which handles wear leveling, flash writing, and host interface. The controller can be configured to respond exactly like a standard SD card.

The hard part is getting a tiny 153 ball BGA package to fit into an SD card slot.  [Trochilidae] accomplished that by cutting open a microSD to SD adapter. He then carefully soldered the balls from the eMMC to the pins of the adapter. Thin gauge wire, a fine tip iron, and a microscope are essentials here. Once the physical connections were made,  [Trochilidae] plugged the card into his Linux machine. The card was recognized, and he managed to pull all the data off with a single dd command.

[Trochilidae] doesn’t say what happened after the data was copied, but we’re guessing he analyzed the dump to determine the filesystem, then mounted it as a drive. The end result was a ton of recovered photos and a very happy coworker.

If you like crazy soldering exploits, check out this PSP reverse engineering hack, where every pin of a BGA was soldered to magnet wire.

Magically Repair AVR Chips

If you’ve ever spent time working with AVR microcontrollers you’ve probably set the fuse bits incorrectly at least once. The ATmega fusebit doctor will automatically repair the fuse bits and get you back in business until your next mishap. The ATmega8 that powers the device has the chip signatures for the ATmega family stored inside so it will automatically detect which chip you’re trying to ‘unbrick’. From there it looks up the correct fuse bits and resurrects the sick microcontroller. This is useful in recovering a chip that has serial programming disabled, used the reset pin as I/O, or just enabled an external clock without the necessary hardware to deliver on that feature.

This magic is taken care of by using High Voltage Parallel Programming. We’ve seen HVPP used in the Arduino rescue shield and it is a valuable feature of the AVR Dragon, our favorite AVR programmer, as well as others. Still, you can hardly beat the ease of plugging a dead chip into this board and pressing one button. Oh, did you brick a member of the ATtiny family? There’s a rescue board for those too.

[Thanks Stewe]

Scratchbot: Whiskers To The Rescue

[youtube=http://www.youtube.com/watch?v=GTekO_RQCzE]

Scratchbot is designed as a rescue bot, going places where there is low visibility. It’s defining feature is the fact that it uses “whiskers” to feel for things. We feel like this is a little gimmicky. If it is a low visibility situation, wouldn’t IR or audio, possibly sonar be a more effective? How would it differentiate between different physical obstacles? Are the whiskers really new? Aren’t they really just bump sensors? Maybe they have something a little more complicated going on. There was another recent bot that utilized whiskers and compared different tactile profiles to determine what it was touching.