Building a mechanical counter out of scrap wood

Watching [Matthias Wandel] fabricate this mechanical counter from scrap wood is just fascinating. He likens the mechanism to the counters you would find on decades-old cassette tape players.

You may recognize the quality of [Matthias’] work. We’ve seen several pieces, but his binary adder is still one of our favorites. This project gives us a very clear view of the development and fabrication process. He even posted a detailed guide if you want to build your own.

He started by prototyping a mechanism to increment and decrement the counter. With that proven design he started laying out the rest of the gears. These were cut from plywood scraps he had from other projects. Notice the small gears seen above which are missing parts of some teeth. Those sections were removed using a drill press with a Forstner bit. The missing teeth cause the next digit over to increment more slowly, resulting in a 1/10 ratio. This part of the design is demonstrated about three minutes into the video after the break.

Continue reading “Building a mechanical counter out of scrap wood”

Moulding New Gears for a Micro Helicopter

heli_09

So you’ve got a broken gear for you model helicopter, and don’t have a 3d printer handy. If you need your little helo flying right away, [James] wrote in to tell us about his solution. As you may have guessed from the title, he made a tiny mould and produced a copy of the gear he needed with it. Given the complications of printing or some tiny subtractive method, this little gear turned out really nicely!

The video after the break shows all the steps for doing this procedure. If you’d rather just skip to the results, check out around 10:00 to see the finished gear, and eventually the little guy in flight. As noted, he did have to drill a hole in the middle of the gear after the mould process, but this was the only machining operation.

The helicopter gears worked out nicely, but be sure to check out some of the other really interesting projects on the [xrobots], some of which we’ve featured here! Continue reading “Moulding New Gears for a Micro Helicopter”

Converting a manual camera lens to use motorized zoom and focus

[Guy] wrote in to share this motorized camera lens project he recently finished. He really loved the zoom lens, but since both zoom and focus are manually controlled, he sometimes had trouble getting both set to the right place in time to take the shot. With modern DSLR cameras which allow video capture, he also wants to have the option of a smooth zoom that is always in focus. The solution was to add motors to the rings and control them with a Wii classic controller.

This hack really shines when it comes to the add-on hardware. He has some beautifully made rings which wrap around the focus and zoom rings on the lens. They are then held in place by a timing belt. These belts have teeth which key into the gears on a pair of servo motors. From there it’s a snap to drive the motors with an Arduino, connecting to the Wii controller with a breakout connector. You can see [Guy] showing off the build in the clip after the break.

Continue reading “Converting a manual camera lens to use motorized zoom and focus”

Just in case you didn’t know how awesome laser cutters really are

[Alex] got his hands on an Epiloge laser cutter the easy way — the company he works for bought one. We’re sure he’s not trying to rub it in, but he really does make the tool look and sound cool in the post he wrote purely to show off the new toy hardware.

This model is a CO2 laser and it’s capable of etching and cutting a variety of materials. It does so with a 1200 DPI resolution at 0.005 pitch. The samples of engraved text and images show the clean lines and shapes this type of accuracy can achieve. The most stunning example is a piece of anodized aluminum which ends up showing some fantastic contrast that would make perfect face plates for project enclosures. Then there’s the cutting feature which is responsible for the gear demo seen above. We were surprised to hear that it will cut through acrylic but not polycarbonate.

After the break we’ve embedded [Alex’s] video. The camera is focused on the cutter as it engraves some lettering, then cuts out a gear. During the process he discusses what he’s learned about the device, sharing some interesting tidbits along the way.

We’re hoping to see some cool stuff like this from [Grenadier] who recently won a similar 40 Watt CO2 laser from Full Spectrum.

Continue reading “Just in case you didn’t know how awesome laser cutters really are”

Wooden machine belongs in Willy Wonka’s factory

Behold the wooden machine (translated) that is used for… well it does… it was built because… Okay, this is a case where asking what it does or why it was built is the wrong question. [Erich Schatt] began building the piece that he calls “Wheels” back in 1995. It took just seven years to complete, and is made entirely of wood. The video after the break shows a multitude of moving parts.

The chains were modeled after bicycle chains, which are used to transfer motion from the “rider” throughout the machine. The gearing for each segment was meticulously calculated, then perfected through trial and error. The complexity even calls for a differential and universal joints. It’s mesmerizing to watch and for that reason it’s made appearances at conventions and been featured in art exhibitions.

It’s also worth mentioning that this comes from a very humble-looking shop. [Erich] posted some pictures of his studio and aside from the abundance of bar clamps, it’s just your average garage or basement setup.

Continue reading “Wooden machine belongs in Willy Wonka’s factory”

Mechanical engineering primer

So you’re master of electrons; able to program multiple chip architectures without batting an eye. Good for you. The only problem is that blinking LEDs gets boring after a while and you’re going to want to do something else. Here’s a chance to expand on your physical construction skills. Make: Skill Set is sharing the first chapter from the book Making Things Move by [Dustyn Roberts].

This chapter, which comes in PDF form, covers simple machines. It’ll guide you through the three different types of levers, including examples of how you use these in your everyday life. Next it’s on to pulley systems, wheels and axles, inclined planes and wedges, screws, and gears. [Dustyn] rounds out the chapter by talking about how these concepts are combined into machines like the Rube-Goldberg device seen above. Take some time to look this chapter over and then put it on the holds list from your public library if you’re interested in reading more.

5/8″ ball bearing playground

This kinetic sculpture is a ball bearing’s paradise. Not only do they get a cushy ride around two lift wheels but there’s a variety of enjoyable obstacles they can go down. The first is a vortex made from a wooden flower pot which sends the balls randomly down one of two possible exits. From there it’s on to enjoy a ride on a flip-flop, a divide-by-three (takes weight of three marbles before it dumps them all), a zig-zag track, or a divide by twelve mechanism. We’re sure this is a riveting read, but don’t miss the video after the break where [Ronald Walter] shows it in action and takes it apart to illustrate the various features.

If you’re wondering about the digital logic terms used, we’ve seen wooden devices that use these concepts in the past.

Continue reading “5/8″ ball bearing playground”