Making OLEDs In The Kitchen Sink

oled

When [Ian] first set out to create a homebrew OLED, he found chemical suppliers that wouldn’t take his money, manufacturers that wouldn’t talk to him, and researchers that would actively discourage him. Luckily for us, he powered through all these obstructions and created his own organic LED.

Since at least one conductor in an OLED must be transparent, [Ian] settled on ITO – indium tin oxide – for the anode. This clear coating is deposited on glass, allowing it to conduct electricity and you can buy it through a few interesting suppliers. For the cathode, [Ian] is using a gallium-indium-tin eutectic, an alloy with a very low melting point that allowed him to deposit a small puddle in his OLED stack.

With the anode and cathode taken care of, the only thing left was the actual LED. For this, [Ian] had some success with MEH-PPV, a polymer that is capable of electroluminescence. On top of this is a film of PEDOT:PPS, another polymer that serves to block electrons.

The resulting yellow-green blob of an OLED actually works, and is at least as good as some of the other homebrew semiconductor illumination projects we’ve seen around here. This is only a start, though, and [Ian] plans on putting a whole lot more time into his explorations of organic LEDs.

 

Make Your Own Smart Watch

SmartWatch

Wearables are all the rage lately. Have you been eyeing the Pebble or one of the new smart watches lately but are not sure if it’s for you? With [GodsTale's] “Retro Watch” you can now build your own, allowing you to try out a smart watch without making a huge investment.

This smart watch uses very common and easy to obtain parts: Arduino Pro Mini, HC-06 Bluetooth module, Adafruit’s 0.96’’ OLED display, and a lithium battery. It is amazing how few parts can be used to make such a functional project. While the example packaging shown is a bit rugged around the edges, it gets the job done. Having such simple hardware allows [GodsTale] to focus on the software. One of the coolest aspects of this project is the Android app [GodsTale] provides. The app provides basic functionality, such as viewing RSS feeds and Android notifications. Check out the GitHub and a more detailed write-up for more information.

It would be great to see this project evolve in the future, it has so much potential. We would love to see a custom circuit board, or a model for a 3D printed case for this awesome smart watch. See a video of the Retro Watch in action after the break. If you thought this was cool, check out a few of these recent hacks.

[Read more...]

HackPhx Winter 2014 Hackathon Winners

HackPhx 2014

The HackPhx Winter 2014 hackathon was held at Heatsync Labs hackerspace in Mesa, Arizona, USA. The advertised theme was “Arduino Wearables”. Participating attendees were randomly placed on teams evenly distributed by their disclosed skills across all teams. There were 10 teams with 4 to 5 members per team competing for two winning spots.

Each team had to build an amazing wearable project utilizing the secret ingredient which was Seedstudio’s Arduino-compatible Xadow wearable platform and add-ons. The Xadow is similar to the Arduino Leonardo and participants used an Arduino cross compatibility and pin mapping chart to assist in development.

Top prize was the Judges’ prizes for the best completed and documented Xadow wearable team project. The second prize was the Jury’s prize given to the team project that the other teams liked the most regardless of event criteria.

Read more about the winning teams and watch their presentations after the break.

[Read more...]

Interfacing with the HTC Desire Display and its Touch Panel

Part of [Linas]‘ submission to last year’s Cypress Smarter Life Challenge involved using the HTC Desire display and its touch screen. This particular phone includes a full-color active-matrix OLED (AMOLED) display that has a 3.7″ diagonal and a 480×800 resolution, resulting in a 252ppi pixel density. Using a MSO2024B oscilloscope, [Linas] originally started his adventure with the touchscreen by sniffing the I2C signals. As some math was required to extract the data, he later found the HTC Desire source code and included it on his STM32F429 (so much for reverse engineering!).

After spending many hours searching for the AMOLED display and controller datasheets, [Linas] resorted to pay a company to get the resources he needed. He produced a custom-made PCB to provide the display with the required voltages, as well as offering a 0.1″ connector to interface with it. A RGB565 interface is used to communicate with the screen so only 65k out of the 16 million colors are used. You may download all the program files and datasheets in [Linas] write-up.

Stylish OLED Watch Uses Accelerometer Instead of Buttons

A few days ago [Andrew] contacted us to offer his help for the design of the mooltipass project case. While introducing himself, he casually mentioned his OLED watch that you can see above.

The watch is based on the low-power MSP430F microcontroller from Texas Instruments. It can consume as little as 1.5uA while maintaining a real-time clock and monitoring interrupts. It also uses ferroelectric RAM, which doesn’t need any power to retain its memory contents. That means there’s no need to set the time again if you remove the CR2016 battery that powers the watch.

[Andrew] chose an 0.96″ OLED display that only consumes up to 7mA. He also included an accelerometer that allows him to interact with the watch through its single and double tap detecting feature. He modeled his PCB using EagleCAD and the whole assembly using Sketchup. Most of the components were soldered in his reflow (toaster) oven. The final result is a mere 8.8mm thick and looks very professional in our opinion.

Hackaday Links: Christmas Eve, 2012

It’s Christmas Eve, the perfect time to interact with your extended familial units, eat cookies, nog things up a little, and watch Die Hard. Christmas Eve also means it’s a low-effort day here at Hackaday, so here’s a few cool things we’ve run across in the past few weeks.

A Round OLED Display

1_13inch_Round_OLED

That right there is a circular OLED display. [ArtistEngineer] over on reddit found this display on AliBaba. It’s a 1.13 inch diameter display with a resolution of 128×128 (yeah, we don’t know either). This looks like a great display for a DIY wrist watch, digital gauge, or loads of other devices where a square display doesn’t make much sense.

There seems to be a few circular OLED display manufacturers – including Truly Semiconductors who happened to put up a datasheet for their round display - but sourcing these in reasonable quantities is a pain. Anyone up for a group buy? Think of the fun you’ll have coding a polar coordinate display!

Computing with transistors

gate

So you know computers are made up of simple logic gates, latches, buffers, and other miscellaneous digital cruft,  but how do we turn these digital circuits into a computer? Over the last few months, [Andrew] has been putting up a bunch of blog posts on the application of digital logic. Start out on the ‘Computing with Transistors’ post before moving on to The Digital State and Circuits and Arithmetic. There’s some good readin’ there.

 Embedding 3D objects in a web page

Go ahead. Click it. It’s Sketchfab that allows anyone to publish interactive 3D designs without a browser plugin. If anyone out there is trying to build a Thingiverse clone that isn’t tied to Makerbot, consider using this for the preview page for each object.

Surprisingly, Twinkies were the one thing that didn’t survive the Apocalypse.

twinkie

While there’s no use in mourning the death of the Twinkie – Little Debbie also makes small cream-filled cakes – you might as well include some Twinkies, Snowballs, Ding Dongs, and Ho-Hos in your Christmas baking. [scoochmaroo] on Instructables put together a list of homebrew recipes for the now defunct Hostess snack cakes.

Perfect for autonomous robots

code

[maxogden] over on the gits put together a script for automatically joining wireless networks on Linux. This was tested on a Raspberry Pi, and we’re thinking it would be perfect for whatever autonomous creation you’ll be building in your workshop next year.

OLED name badge with rechargeable LiPo cell

oleduino-name-badge

Here’s a project that let [Rick Pannen] try his hand with an OLED display and a rechargeable power source. He calls it OLEDuino which is a mashup of the display type and the Arduino compatible chip running the whole thing. He figures it will serve nicely as a geeky name badge but also ported a Breakout type game to play when he’s bored.

The project is an inexpensive way to attempt a more permanent trinket than simply using Arduino and a breadboard. [Rick] sourced the OLED display and USB LiPo charging cable on eBay. The ATmega328 hiding below the display is being driven from the 3.7V LiPo cell without any power regulation. The four buttons at the bottom provide the only user input but it should be more than enough for a few simple tricks.

Head over to his code repo for a bit more information. The schematic and board are both Eagle files. We generated an image of the schematic and embedded it after the break if you want to take a quick look at how simple the hardware really is.

[Read more...]