Restoring $5 Busted Synthesizer Made Easy, Thanks To Thermal

[D. Scott Williamson] paid $5 for a Roland JV-30 synthesizer at a garage sale. Score! There was only one catch: it didn’t work and didn’t include the power supply. Luckily, restoring it was made easier by breaking out a thermal camera.

As mentioned, the keyboard was missing a 9 VDC power supply (rated 800 mA) with a center-negative barrel connector. Slightly oddball, but nothing an enterprising hacker can’t deal with. After supplying power with a bench supply, not only did the keyboard not come to life, but the power supply clamped the current draw at 1.5 A! Something was definitely not right.

This shorted glass-bodied diode might look normal to the naked eye, but thermal imaging makes it clear something’s amiss.

Inside, there was no visible (or olfactory) sign of damage, but looking closer revealed that a little SMT capacitor by the power connector was cracked in two. Fixing that didn’t bring the keyboard to life, so it was time to break out the thermal imager. Something was soaking up all that current, and it’s a fair bet that something is getting hot in the process.

The culprit? The reverse polarity protection diode was shorted, probably as a result of damage by an inappropriate power supply or a surge of some kind. Replacing it resulted in a working keyboard! Not bad at all for $5, a diode, an SMT cap, and a little workbench time. The finishing touch was replacing a missing slider knob, which took some work in OpenSCAD and a 3D printer. Overall, not bad!

Thermal imaging used to be the stuff of staggering price tags, but it’s downright accessible these days, and makes it easy to spot things that are hot when they shouldn’t be. And if a thermal camera’s lens isn’t what you think it should be? It’s even possible for a sufficiently motivated and knowledgeable hacker to modify those.

Got A Cardboard Box? Get Into Food Smoking!

We appreciate a good kitchen hack, and we have always liked TV personality and chef [Alton Brown]’s McGuyver-ish approach to these things. So for anyone who hasn’t seen it, let’s take a moment to highlight how to make (and use) Alton Brown’s Cardboard Box Smoker.

[Alton] himself confesses that over the years it has remained his favorite smoker for a few good reasons. The price is certainly right, but there are a few other things that really stand out in the design. It’s easy to assemble and take down, needing very little storage space compared to a purpose-built smoker. It’s also trivial to monitor the temperature inside: just poke a thermometer probe through the side of the box. Finally, it’s a great way to get some additional use out of an old hot plate and cast iron pan. It’s the kind of thing one could put together from a garage sale and a visit to the dollar store.

The cardboard box is perfectly serviceable, but one may be tempted to kick it up a notch with some upgrades. In that case, check out this tech-upgraded flower pot smoker (also based on an Alton Brown design.)

Reusing and repurposing is a great way to experiment in the kitchen without needing to buy specialized equipment. Here’s another example: Kyoto-style cold brew coffee. It’s thick and rich and brings out different flavor profiles. Curious? Well, normally it requires a special kind of filter setup, but it can also be accomplished with cheesecloth, coffee filters, and a couple of cut-up soft drink bottles. Oh, and some rubber bands and chopsticks if things are too wobbly. Just do yourself a favor and use good quality coffee beans, or better yet, roast them yourself. Just trust us on this one.

When Combat Robot Wheels Need To Be Nice And Cheap (But Mostly Cheap)

It started with [CHORL] making a promise to himself regarding constructing a new combat robot: no spending of money on the new robot.

That rule was violated (but only a little) by making his robot’s wheels out of EVA kneeling pads. EVA (Ethylene-Vinyl Acetate) is a closed-cell foam that makes for durable yoga mats, kneeling pads, and products of a similar nature. [CHORL] found a way to turn them into light but serviceable wheels for his robot: the Susquehanna Boxcar.

Nested hole saws create concentric holes. Perfect for wheels.

Here’s how the wheels were made: [CHORL] began with two hole saws. Nesting a smaller hole saw into a larger one by putting both on the same arbor created a saw with two holes, both of which were centered with respect to one another. The only problem was that this hole saw was not actually deep enough to cut completely through the thick foam. Luckily, cutting roughly halfway through on one side, then flipping the sheet over and cutting through from the other side was a good workaround. That took care of turning the thick foam sheet into round wheels.

A 3D-printed part served as a wheel hub as well as gear for the drivetrain. We want to call attention to the clever method of reinforcing the connection between the parts. [CHORL] didn’t want to just glue the geared hub directly to the surface of the foam wheel, because he suspected it might separate under stress. To address this, he designed six slots into the hub, cut matching slots into the foam wheel, and inserted six spline-like reinforcements in the form of some ABS strips he had on hand. Gluing it all together with E-6000 and leaving it to cure overnight under a weight resulted in a geared wheel assembly that [CHORL] judged to be about as round and rigid as a wheel should be, so the robot had a solution for nice light wheels that were, above all, cheap!

Lots of robots need wheels, and unsurprisingly, DIY solutions are common projects. [CHORL]’s approach here looks pretty scalable, as long as one can cut some accurate holes.

Interested in knowing more about the robot these wheels are destined for? [CHORL]’s still working on the Susquehanna Boxcar, but it’s almost done, and you can read a bit more about it (and see a few more pictures) here.

Vapor Trails And Fan Make For Fantastic Photos In DIY Wind Tunnel

Every wanted a mini wind tunnel to check the aerodynamics of scale model cars, drones, or other small objects? Then check out [dannyesp]’s mostly-3D-printed DIY wind tunnel (video, embedded below). Don’t forget to also browse the additional photos in this Reddit thread.

A junk parts project doesn’t have to look like a hack job.

There’s not much for plans available, since as [dannyesp] admits, this device was very much the product of trial-and-error and junk bin parts. The video and photos are more than enough for any enterprising hacker to work with.

The core of the device is a large fan made from a junked drone motor. This fan is located at the rear of the tunnel. A small anemometer is placed at the front, where some 3D-printed baffles also work to smooth out turbulent incoming air.

The foggy trails of vapor come from a hacked-up vape pen. Vapor gets piped through some tubing to the front of the tunnel. There, the vapor trails are drawn towards the low-pressure area at the rear, traveling over and around the object on the way. [dannyesp] also mentions that the platform holding the object is mounted on a rail, which incorporates some kind of pressure sensor in an attempt to quantify wind drag.

We want to take a moment to appreciate just how clean this “junk parts” project looks — even though it is made from things like broken photo frames. All of this comes down to thoughtful assembly. A hack doesn’t have to look like a hack job, after all. We also love the little control box that, instead of having a separate power indicator, lights up like a little nightlight when it has power.

Hacking vaporizers is a fantastic way to create a small, portable fog machine. These can create fantastic costume effects like this smoking Ghost Rider skull. They are a great way to turn an off-the-shelf consumer item into something that cost quite a bit more just a few years back.

Continue reading “Vapor Trails And Fan Make For Fantastic Photos In DIY Wind Tunnel”

GCore: Make Portable Devices With Less Frustration

[Dan Julio]’s gCore (short for Gadget Core) is aimed at making GUI-based portable and rechargeable gadgets much easier to develop. gCore is the result of [Dan]’s own need for a less tiresome way to develop such hardware.

A touchscreen is great, but high-quality power control and charging features are what really make a portable device sing.

[Dan] found that he seemed to always be hacking a lot of extra circuitry into development boards just to get decent power management and charge control. To solve this, he designed his own common hardware platform for portable gadgets and the gCore was born.

While the color touchscreen is an eye-catching and useful addition, the real star of his design is the power management and charging features. Unlike most development hardware, the gCore intelligently shares load power with charging power. Power on and power off are also all under software control.

Sound intriguing? That’s not all the gCore has to offer, and you can learn more from the project page at hackaday.io (which has a more in-depth discussion of the design decisions and concept.) There are also some additional photos and details on [Dan]’s website.

[Dan] is no stranger to developing hardware. The tcam-mini thermal imager (and much more) is his work, and we have no doubt the gCore’s design and features are informed directly by [Dan]’s actual, practical development needs.

3D Print Your Own Multi-Color Filament

Interested in experimenting with your own multi-color filament? [Turbo_SunShine] says to just print your own, and experiment away! Now, if you’re thinking that 3D printing some filament sounds inefficient at best (and a gimmick at worst) you’re not alone. But there’s at least one use case that it makes sense for, and maybe others as well.

Printing with bi-color filament results in an object whose color depends on viewing angle, and part geometry.

There is such a thing as bi-color filament (like MatterHackers Quantum PLA) which can be thought of as filament that is split down the center into two different colors. Printing with such filament can result in some trippy visuals, like objects whose color depends in part on the angle from which they are viewed. Of course, for best results it makes sense to purchase a factory-made spool, but for light experimenting, it’s entirely possible to 3D print your own bi-color filament. Back when [Turbo_SunShine] first shared his results, this kind of stuff wasn’t available off the shelf like it is today, but the technique can still make sense in cases where buying a whole spool isn’t called for.

Here is how it works: the 3D model for filament is a spiral that is the right diameter for filament, printed as a solid object. The cross-section of this printed “filament” is a hexagon rather than a circle, which helps get consistent results. To make bi-color filament, one simply prints the first half of the object in one color, then performs a color change, and finishes the print with a second color. End result? A short coil of printed “filament”, in two colors, that is similar enough to the normal thing to be fed right back into the printer that created it. This gallery of photos from [_Icarus] showcases the kind of results that are possible.

What do you think? Is 3D printing filament mainly an exercise in inefficiency, or is it a clever leveraging of a printer’s capabilities? You be the judge, but it’s pretty clear that some interesting results can be had from the process. Take a few minutes to check out the video (embedded below) for some additional background.

Continue reading “3D Print Your Own Multi-Color Filament”

Does Hot Water Freeze Faster Than Cold? Debate Continues Over The Mpemba Effect

Does hot water freeze faster than cold water? On its face this idea seems like it should be ridiculously simple to test, and even easier to intuit, but this question has in fact had physicists arguing for decades.

Erasto Mpemba’s observations initiated decades of research into the Mpemba effect: whether a liquid (typically water) which is initially hot can freeze faster than the same liquid which begins cold.

There’s a name for the phenomenon of something hot freezing faster than something cold: the Mpemba effect,  named for Erasto Mpemba (pictured above) who as a teenager in Tanzania witnessed something strange in high school in the 1960s. His class was making ice cream, and in a rush to secure the last available ice tray, Mpemba skipped waiting for his boiled milk-and-sugar mixture to cool to room temperature first, like everyone else had done. An hour and a half later, his mixture had frozen into ice cream whereas the other students’ samples remained a thick liquid slurry.

Puzzled by this result, Mpemba asked his physics teacher what was going on. He was told “You were confused. That cannot happen.” Mpemba wasn’t convinced by that answer, and his observations ultimately led to decades of research.

What makes this question so hard to nail down? Among many of the issues complicating exactly how to measure such a thing is that water frankly has some odd properties; it is less dense as a solid, and it is also possible for its solid and liquid phases to exist at the same temperature. Also, water in the process of freezing is not in equilibrium, and how exactly things act as they relax into equilibrium is a process for which — physics-wise — we lack a good theory. Practically speaking, it’s also a challenge how to even accurately and meaningfully measure the temperature of a system that is not in equilibrium.

But there is experimental evidence showing that the Mpemba effect can occur, at least in principle. How this can happen seems to come down to the idea that a hot system (having more energy) is able to occupy and explore more configurations, potentially triggering states that act as a kind of shortcut or bypass to a final equilibrium. In this way, something that starts further away from final equilibrium could overtake something starting from closer.

But does the Mpemba effect actually exist — for example, in water — in a meaningful way? Not everyone is convinced, but if nothing else, it has sure driven a lot of research into nonequilibrium systems.

Why not try your own hand at investigating the Mpemba effect? After all, working to prove someone wrong is a time-honored pastime of humanity, surpassed only in popularity by the tradition of dismissing others’ findings, observations, or results without lifting a finger of your own. Just remember to stick to the scientific method. After all, people have already put time and effort into seriously determining whether magnets clean clothes better than soap, so surely the Mpemba effect is worth some attention.