Explaining Efail And Why It Isn’t The End Of Email Privacy

Last week the PGPocalipse was all over the news… Except that, well, it wasn’t an apocalypse.

A team of researchers published a paper(PDF) where they describe how to decrypt a PGP encrypted email via a targeted attack. The research itself is pretty well documented and, from a security researcher perspective, it’s a good paper to read, especially the cryptography parts.

But we here at Hackaday were skeptical about media claims that Efail had broken PGP. Some media reports went as far as recommending everyone turn off PGP encryption on all email clients., but they weren’t able to back this recommendation up with firm reasoning. In fact, Efail isn’t an immediate threat for the vast majority of people simply because an attacker must already have access to an encrypted email to use the exploit. Advising everyone to disable encryption all together just makes no sense.

Aside from the massive false alarm, Efail is a very interesting exploit to wrap your head around. Join me after the break as I walk through how it works, and what you can do to avoid it.

Continue reading “Explaining Efail And Why It Isn’t The End Of Email Privacy”

Ditch The Tapes, Put An Android In Your Deck

While we here at Hackaday never question why an individual took on a particular project, it surely doesn’t stop our beloved readers from grabbing their pitchforks and demanding such answers in the comments. Perhaps no posts generate more of this sort of furore than the ones which feature old audio gear infused with modern hardware. In almost every case the answer is the same: the person liked the look and feel of vintage hardware, but didn’t want to be limited to antiquated media.

That sentiment is perhaps perfectly personified by the TapeLess Deck Project, created by [Artur Młynarz]. His creations combine vintage cassette decks with an Android phone small enough to fit behind the tape door. An Android application which mimics the look of a playing tape, complete with “hand written” track info, completes the illusion.

The output from the phone is tied into the deck where the audio signal from the tape head would have been, so the volume controls and VU meters still work as expected. Watching the meters bounce around while the animated “tape” plays on the screen really does look incredibly slick, though the effect is somewhat hindered by the fact the physical playback controls don’t seem to be implemented. Incidentally, the whole experience works better if the plastic window on the tape door is removed; that way you can utilize the touch and swipe interface [Artur] has in the software.

We’ve seen previous attempts to modernize the audio cassette experience, but they’ve tended to be more of a novelty than anything. But these decks are nice enough that you can like them non-ironically. Though if we’re talking about portable tape players, there’s only room for one in our cold mechanical hearts.

[Thanks to Nikolai for the tip]

Continue reading “Ditch The Tapes, Put An Android In Your Deck”

RoMeLa's ALPHRED - quadruped robot

RoMeLa’s Sideways Walking Robot Has Evolved More Limbs

Despite the success shown in prototypes from groups like Boston Dynamics, bipedal walking is still really hard to implement. When the robot lifts one leg, it has to shift its center of gravity over the other leg to avoid falling sideways.

The Autonomous Legged Personal Helper Robot with Enhanced Dynamics (ALPHRED) is getting around this problem by coming at it from a different angle. ALPHRED walks sideways and throws away the distinction between arms and legs.

The bot is RoMeLa at UCLA’s latest evolution in their approach to traditional bipedal roadblocks. Sideways walking is something we covered when we talked about their previous version, NABi, which had only two legs. ALPHRED expands that to four limbs. As the video below shows, all four limbs can be used for walking using either a wide, stable sprawl or the limbs can reorient to a narrower dog or horse-like stance for faster running.

Beyond walking, one or two of the limbs can be put to use as hands to open a door or hand over a package, which is why they refer to them as limbs instead of legs or hands. Only an animation is shown of that configuration but RoMeLa is a robotics lab which we keep an eye on so we’ll let you know if they demonstrate it.

The video goes on to show a neat actuator with active compliance which they call BEAR, Back-drivable Electromagnetic Actuator for Robots. A search turned up no further details but let us know in the comments if you have any. We also liked seeing how they use a speaker to give a rough idea of the amount of current being drawn. While it’s both practical and a hack, it also adds a nice sci-fi touch.

Continue reading “RoMeLa’s Sideways Walking Robot Has Evolved More Limbs”

Slipcasting Resin Prototypes

[Eric Strebel] doesn’t need an introduction anymore. If there is a picture of an elegantly designed part with a professional finish on our pages, there is a good chance he has a hand in it. This time he is sharing his method of making a part which looks like it is blow-molded but it is not. Blow-molded parts have a distinctive look, especially made with a transparent material and [Eric’s] method certainly passes for it. This could upgrade your prototyping game if you need a few custom parts that look like solidified soap bubbles.

Mold making is not covered in this video, which can also be seen below the break, but we can help you out with a tip or two. For demonstration’s sake, we see the creation of a medical part which has some irregular surfaces. Resin is mixed and degassed then rolled around inside the mold. Then, the big reveal, resin is allowed to drain from the mold. Repeat to achieve the desired thickness.

This is a technique adapted from ceramics called slipcasting. For the curious, an elegant ceramic slipcasting video demonstration can be seen below as well. For an added finishing touch, watch how a laquer logo is applied to the finished part; a touch that will move the look of your build beyond that of a slapdash prototype.

More education from this prolific maker can be seen in his video on painting with a professional-looking finish and his tips for working with foam-core.

Continue reading “Slipcasting Resin Prototypes”

Card Reader Lockout Keeps Unauthorized Tool Users At Bay

It’s a problem common to every hackerspace, university machine shop, or even the home shops of parents with serious control issues: how do you make sure that only trained personnel are running the machines? There are all kinds of ways to tackle the problem, but why not throw a little tech at it with something like this magnetic card-reader machine lockout?

[OnyxEpoch] does not reveal which of the above categories he falls into, if any, but we’ll go out on a limb and guess that it’s a hackerspace because it would work really well in such an environment. Built into a sturdy steel enclosure, the guts are pretty simple — an Arduino Uno with shields for USB, an SD card, and a data logger, along with an LCD display and various buttons and switches. The heart of the thing is a USB magnetic card reader, mounted to the front of the enclosure.

To unlock the machine, a user swipes his or her card, and if an administrator has previously added them to the list, a relay powers the tool up. There’s a key switch for local override, of course, and an administrative mode for programming at the point of use. Tool use is logged by date, time, and user, which should make it easy to identify mess-makers and other scofflaws.

We find it impressively complete, but imagine having a session timeout in the middle of a machine operation would be annoying at the least, and potentially dangerous at worst. Maybe the solution is a very visible alert as the timeout approaches — a cherry top would do the trick!

There’s more reading if you’re one seeking good ideas for hackerspace. We’ve covered the basics of hackerspace safety before, as well as insurance for hackerspaces.

Continue reading “Card Reader Lockout Keeps Unauthorized Tool Users At Bay”

Hackaday Links Column Banner

Hackaday Links: May 20, 2018

One of the more interesting pieces of tech from Hollywood that never seems to become a reality is a location tracker. Remember the ‘movement tracker’ in Alien that found the cat in the locker? Yeah, like that. Something that reports the direction and distance to a target, kind of like a PKE Meter from Ghostbusters. I think there was something like this in Predator. On Indiegogo, there’s a device that tracks other devices. It’s called the Lynq, and it’s a small, handheld device that tells you the distance and bearing of other paired devices. Hand them out to your friends, and you’ll be able to find each other at Coachella. While the device and use case is interesting, we’re wondering how exactly this thing works. Our best guess is that each device has a GPS module inside, and communicates with other paired devices over the 900MHz band. It’s a bit pricey at $80 per unit (although you need at least two to be useful), but this is a really interesting project.

The SDRPlay SDR1 and SDR2 are — as you would guess — software defined radio receivers, that retail for $2-300. Problem: a few of these units were stolen from a warehouse, and are winding up on eBay. Solution: SDRPlay has decided to disable the specific receivers ‘via the serial number’. In a move just slightly reminiscent of FTDIgate, a manufacturer has decided to brick products that are stolen or infringe on IP. It’s a solution, but I wouldn’t want to be on the customer service team at SDRPlay.

A few years ago, [Oscar] created the PiDP-8/I, a computer kit that miniaturized the venerable PDP-8/I into a desktop form factor, complete with blinkenlights and clicky switches. It’s a full simulation of a PDP-8 running on a Raspberry Pi, and if you took the PiDP-8/I back to 1975, you could, indeed, connect it to other computers. But the PDP-8/I isn’t the most beautiful minicomputer ever created. That honor goes to the PDP-11/70, a beast of a machine wrapped in injection molded plastic and purple toggle switches. Now, after years of work, [Oscar] has miniaturized this beast of a machine. The PiDP-11/70 is a miniature remake of the PDP-11/70, runs a Raspberry Pi, and is everything you could ever want in a minimainframe. The price will be around $250 — expensive, but have you ever tried to find a PDP-11 front panel on eBay?

The Nvidia TX2 is a credit card-sized computer with a powerful ARM processor and a GPU. The TX2 is a module designed for ‘AI at the edge’, or something along those lines, meaning you can take a trained data set, load it onto an SD card, and the TX2 will do all the fancy image processing and OpenCV without a connection to the Internet. The obvious application for the TX2 is something like an ‘AI camera’, and now this is finally a product. The DNNCam is a 4k, 60FPS camera attached to a TX2 and stuffed into an IP67-rated enclosure. If you’re thinking of building anything like a security camera attached to a GPU, this is the all-in-one solution. It’s pricey, yes, but the TX2 module isn’t exactly cheap.

Inverted Pendulum For The Control Enthusiast

Once you step into the world of controls, you quickly realize that controlling even simple systems isn’t as easy as applying voltage to a servo. Before you start working on your own bipedal robot or scratch-built drone, though, you might want to get some practice with this intricate field of engineering. A classic problem in this area is the inverted pendulum, and [Philip] has created a great model of this which helps illustrate the basics of controls, with some AI mixed in.

Called the ZIPY, the project is a “Cart Pole” design that uses a movable cart on a trolley to balance a pendulum above. The pendulum is attached at one point to the cart. By moving the cart back and forth, the pendulum can be kept in a vertical position. The control uses the OpenAI Gym toolkit which is a way to easily use reinforcement learning algorithms in your own projects. With some Python, some 3D printed parts, and the toolkit, [Philip] was able to get his project to successfully balance the pendulum on the cart.

Of course, the OpenAI Gym toolkit is useful for many more projects where you might want some sort of machine learning to help out. If you want to play around with machine learning without having to build anything, though, you can also explore it in your browser.

Continue reading “Inverted Pendulum For The Control Enthusiast”