Impulse Buying A 3040 CNC Machine, What Could Go Wrong?

[joekutz] made an impulse purchase of a CNC machine. It was a 3040 CNC that looked reasonably complete and had an attractive price, what could possibly go wrong? As it happens, [joekutz] really didn’t know what he was in for. Sometimes the price is good, but you pay in other ways. But where some would see defeat, [joekutz] sees an opportunity to document the restoration.

Dial indicators are useful tools for measuring how straight some parts aren’t.

The 3040 are relatively cheap and simple CNC machines that have been available from a variety of overseas retailers for years. They have 30 cm by 40 cm beds (hence the name) and while there are many variations, they all work about the same. [joekutz] expected that getting his up and running and converted to open source would be a fun weekend project, but it ended up taking far longer than that. In fact, it turns out that the machine was damaged in surprising and unexpected ways.

[joekutz] has a series of videos demonstrating the process of diagnosing and repairing the various things wrong with this device. In the first video, he dismantles the machine and discusses the next steps. In the second video, he takes some time to repair some dial indicators that will be critical for measuring the various things wrong with the CNC parts. Video number three delves into finding out the horrible things wrong with the machine, and the fourth is where repairs begin, including bending shafts and sanding blocks back into service.

Those videos are embedded below, and while the machine isn’t quite restored yet, progress is promising. We’ve seen easy and effective upgrades for such CNC machines before, but if you happen to be in more of a repair and restore situation, give [joekutz]’s work a look because it might just save you some time and frustration.

Continue reading “Impulse Buying A 3040 CNC Machine, What Could Go Wrong?”

How Do They Do That?

Last week’s Chaos Communication Camp is kinda a big deal: 6,000 hackers all out in a field all need power, food, drink, networking, and of course, sewage in the middle of nowhere. Oh yeah, plus video services on multiple simultaneous stages, custom phone infrastructure, a postal service, and even a diesel train. How is that even possible to run with only volunteers? How do they even know how to run something this scale?

My wife asked me this question while we were driving up to Berlin, and the answer is of course the same as it is to “Excuse me, can you tell me how to get to Carnegie Hall?” Practice.

But it’s not just practice. It’s also passing down the lessons learned to the next generation, making procedures that are not 100% dependent on the people doing the jobs, but can be passed on to the next volunteer willing to pick up the torch.

And then I was interviewing [Jens Ohlig] and [Mitch Altman] about the early days of the second wave hackerspaces in America for the podcast. (Some great interviews – go check it out!) The central story there is essentially the same: the critical missing ingredient that lead to the blossoming of US hackerspaces was simply a set of instructions and design principles – drawing on the experience of established hackerspaces.

Sharing information is a fundamental cornerstone of the hacker ethic, and it gives the next hacker a leg up. Contributes to the global hive mind. And it makes things possible that would otherwise seem impossible. Pushing the hacker state-of-the-art is what Hackaday is all about, and we’re used to thinking of it in terms of a particular microcontroller library, but seeing how the same sharing makes impossible logistics possible was inspirational. Don’t be afraid to start small and iterate – and take good notes.

2023 Cyberdeck Challenge: KOAT0 Portable Terminal

We’ve had cyberdecks as part of the scenery for long enough now that there are a series of common elements that appear across many different builds. The Raspberry Pi, for instance, or the mechanical keyboard, with a 3D printed body. [RobsonCuto]’s KOAT0 Portable Terminal has some of those in a particularly slim and neat design. The orange and grey color scheme is great really pops. Where this deck really shines though, is the display.  He’s eschewed LCDs or OLEDs, even CRTs, and gone for an unusual choice in a dot-matrix VFD.

The VFD in question is commonly available on AliExpress where it appears to be used for displaying Chinese characters. It’s not an obvious choice for a cyberdeck, so once the tidy-looking case is complete the real challenge in this project becomes how to drive it from the Pi. To that end, he appears to have some kind of text output working but still needs to complete a framebuffer driver. We applaud the effort and we really like the display.  We’re curious as to how its meager resolution might best be used in a Linux device.

All in all, this is a ‘deck we’d be happy to use ourselves if it were an option. We particularly like the on-the-arm style of use, and we’re pretty sure it’s the first time we’ve seen one of these displays on these pages.

Microsoft Discontinues Kinect, Again

The Kinect is a depth-sensing camera peripheral originally designed as a accessory for the Xbox gaming console, and it quickly found its way into hobbyist and research projects. After a second version, Microsoft abandoned the idea of using it as a motion sensor for gaming and it was discontinued. The technology did however end up evolving as a sensor into what eventually became the Azure Kinect DK (spelling out ‘developer kit’ presumably made the name too long.) Sadly, it also has now been discontinued.

The original Kinect was a pretty neat piece of hardware for the price, and a few years ago we noted that the newest version was considerably smaller and more capable. It had a depth sensor with selectable field of view for different applications, a high-resolution RGB video camera that integrated with the depth stream, integrated IMU and microphone array, and it worked to leverage machine learning for better processing and easy integration with Azure. It even provided a simple way to sync multiple units together for unified processing of a scene.

In many ways the Kinect gave us all a glimpse of the future because at the time, a depth-sensing camera with a synchronized video stream was just not a normal thing to get one’s hands on. It was also one of the first consumer hardware items to contain a microphone array, which allowed it to better record voices, localize them, and isolate them from other noise sources in a room. It led to many, many projects and we hope there are still more to come, because Microsoft might not be making them anymore, but they are licensing out the technology to companies who want to build similar devices.

Bypassing Bitlocker With A Logic Analzyer

Security Engineer [Guillaume Quéré] spends the day penetration testing systems for their employer and has pointed out and successfully exploited a rather obvious weakness in the BitLocker full volume encryption system, which as the linked article says, allows one to simply sniff the traffic between the discrete TPM chip and CPU via an SPI bus. The way Bitlocker works is to use a private key stored in the TPM chip to encrypt the full volume key that in turn was used to encrypt the volume data. This is all done by low-level device drivers in the Windows kernel and is transparent to the user.

TPM chip pins too small? Just find something else on the bus!

The whole point of BitLocker was to prevent access to data on the secured volume in the event of a physical device theft or loss. Simply pulling the drive and dropping it into a non-secured machine or some other adaptor would not provide any data without the key stored by the TPM. However, since that key must pass as plaintext from the TPM to the CPU during the boot sequence, [Guillaume] shows that it is quite straightforward — with very low-cost tools and free software — to simply locate and sniff out this TPM-to-CPU transaction and decode the datastream and locate the key. Using little more than a cheapo logic analyser hooked up to some conveniently large pins on a nearby flash chip (because the SCK, MISO, and MOSI pins are shared with the TPM) the simple TIS was decoded enough to lock onto the bytes of the TPM frame. This could then be decoded with a TPM stream decoder web app, courtesy of the TPM2-software community group. The command to look for is the TPM_CC.Unseal which is the request from the CPU to the TPM to send over that key we’re interested in. After that just grabbing and decoding the TPM response frame will immediately reveal the goods.

Continue reading “Bypassing Bitlocker With A Logic Analzyer”

QSPICE Picks Up Where LTSpice Left Us

[Mike Engelhardt] is a name that should be very familiar to the hardcore electronics nerd. [Mike] is the developer responsible for LTSpice, which is quite likely the most widely used spice-compatible simulator in the free software domain. When you move away from digital electronics and the comfort of software with its helpful IDEs and toolchains, and dip a wary toe into the murky grey waters of analog or power electronics, LTSpice is your best friend. And, like all best friends, it’s a bit quirky, but it always has your back. Sadly, LTSpice development seems to have stalled some years ago, but luckily for us [Mike] has been busy on the successor, QSpice, under the watchful eye of Qorvo.

It does look in its early stages, but from a useability point of view, it’s much improved over LTSpice. Performance is excellent (based on this scribe’s limited testing while mobile.) Gone (thankfully!) is the uncommon verb-noun usage paradigm — replaced with a more usual cut-n-paste flow. Visually it still kind of looks like LTspice in places, but nicer with a clear and uncluttered design that gets straight to the point. Internally, the simulation engine has improved in speed and accuracy, as well as adding native support for modern semiconductor types, such as wide bandgap materials like SiC. Noted is that this updated software has a particular emphasis on power integrity and noise analysis, which are sticky problems that have a big impact on modern high-power systems.

Continue reading “QSPICE Picks Up Where LTSpice Left Us”

Wireless Data Connections Through Light

When wired networking or data connections can’t be made, for reasons of distance or practicality, various wireless protocols are available to us. Wi-Fi is among the most common, at least as far as networking personal computers is concerned, but other methods such as LoRa or Zigbee are available when data rates are low and distances great. All of these methods share one thing in common, though: their use of radio waves to send data. Using other parts of the electromagnetic spectrum is not out of the question, though, and [mircemk] demonstrates using light as the medium instead of radio.

Although this isn’t a new technology (“Li-Fi” was first introduced in 2011) it’s not one that we see often. It does have a few benefits though, including high rates of data transmission. In this system, [mircemk] is using an LED to send the information and a solar cell as the receiver. The LED is connected to a simple analog modulator circuit, which takes an audio signal as its input and sends the data to the light. The solar cell sends its data, with the help of a capacitor, straight to the aux input on a radio which is used to convert the signal back to audio.

Some of the other perks of a system like this are seen here as well. The audio is clear even as the light source and solar cell are separated at a fairly significant distance, perhaps ten meters or so. This might not seem like a lot compared to Wi-Fi, but another perk shown is that this method can be used within existing lighting systems since the modulation is not detectable by the human eye. Outside of a home or office setting, systems like these can also be used to send data much greater distances as well, as long as the LED is replaced with a laser.

Continue reading “Wireless Data Connections Through Light”