Holograms Display Time With ESP32

Holograms and holographic imagery are typically viewed within the frame of science fiction, with perhaps the most iconic examples being Princess Leia’s message to Obi-Wan in Star Wars, or the holodecks from Star Trek. In reality, holograms have been around for a surprising amount of time, with early holographic images being produced in the late 1940s. There are plenty of uses outside of imagery for modern holographic systems as well, and it’s a common enough technology that it’s possible to construct one using an ESP32 as well.

In this build, [Fiberpunk] demonstrates the construction and operation of a holographic clock. The image is three-dimensional and somewhat transparent and is driven by an ESP32 microcontroller. The display is based around a beamsplitter prism which, when viewed from the front, is almost completely invisible to the viewer. The ESP32 is housed in a casing beneath this prism, and [Fiberpunk] has two firmware versions available for the device. The first is the clock which displays an image as well as the time, and the second is more of a demonstration which can show more in-depth 3D videos using gcode models and also has motion sensing controls.

For anyone interested in holography, a platform like this is might make an excellent entry point to explore, and with the source for this build available becomes even easier. It’s almost certainly less expensive than these 3D printers that can turn out custom holographic images, and has the added benefit of being customizable and programmable as well.

Continue reading “Holograms Display Time With ESP32”

A Look At Sega’s 8-Bit 3D Glasses

From around 2012 onwards, there was a 3D viewing and VR renaissance in the entertainment industry. That hardware has grown in popularity, even if it’s not yet mainstream. However, 3D tech goes back much further, as [Nicole] shows us with a look at Sega’s ancient 8-bit 3D glasses [via Adafruit].

[Nicole]’s pair of Sega shutter glasses are battered and bruised, but she notes more modern versions are available using the same basic idea. The technology is based on liquid-crystal shutters, one for each eye. By showing the left and right eyes different images, it’s possible to create a 3D-vision effect even with very limited display hardware.

The glasses can be plugged directly into a Japanese Sega Master System, which hails from the mid-1980s. It sends out AC signals to trigger the liquid-crystal shutters via a humble 3.5mm TRS jack. Games like Space Harrier 3D, which were written to use the glasses, effectively run at a half-speed refresh rate. This is because of the 60 Hz NTSC or 50 Hz PAL screen refresh rate is split in half to serve each eye.  Unfortunately, though, the glasses don’t work on modern LCD screens, as their inherent display lag throws off the timing of the pulses the console sends to the glasses.

It’s a neat look at an ancient bit of display tech that had a small resurgence with 3DTVs in the 2010s. By and large, it seems like humans just aren’t that into 3D, at least beneath a full-VR experience. Meanwhile, if you’re wondering what 8-bit 3D looked like, we’ve got a 3D video (!) after the break.

Continue reading “A Look At Sega’s 8-Bit 3D Glasses”

Building The World’s Largest Nintendo 3DS

While the Nintendo 3DS was capable of fairly impressive graphics (at least for a portable system) back in its heyday, there’s little challenge in emulating the now discontinued handheld on a modern computer or even smartphone. One thing that’s still difficult to replicate though is the stereoscopic 3D display the system was named for. But this didn’t stop [BigRig Creates] from creating this giant 3DS with almost all of the features of an original console present.

The main hurdle here is that the stereoscopic effect that Nintendo used to allow the 3DS to display 3D graphics without special glasses doesn’t work well at long distances, and doesn’t work at all if there is more than one player. To get around those limitations, this build uses a 3D TV with active glasses. This TV is mounted to a bar stool with the help of some counterweights, and a second touch-sensitive screen courtesy of McDonalds makes up the other display.

The computer driving this massive handheld console runs Citra, and also handles the scaled-up controls as well. To recreate the system’s analog touch pad, a custom joystick tipped with conductive filament is used to interact with a smartphone hidden inside the case. Opposing rubber bands are used to pull the stick back into the center when it’s not being pushed.

Plenty of 3DS games are faithfully replicated with this arcade-sized replica, and as Citra supports various 3D displays, upscaling of the graphics, and the touchscreen interface, almost everything from the original console is produced here. There are a few games that don’t work exactly right, but all in all it’s a remarkable build and, as far as we can tell, the largest 3DS in the world. Don’t forget that even though this console is out of production now, there’s still a healthy homebrew scene to take part in.

Continue reading “Building The World’s Largest Nintendo 3DS”

Study Hacker History, And Update It

Looking through past hacks is a great source of inspiration. This week, we saw [Russ Maschmeyer] re-visiting a classic hack by [Jonny Lee] that made use of a Wiimote’s IR camera to fake 3D, or at least provide a compelling parallax effect that’ll fool your brain, without any expensive custom hardware.

[Lee]’s original demo was stunning, and that alone is reason to revisit it. Using the Wiimote as the webcam was inspired back in 2007, because it meant that there was no hard computer vision work to be done in estimating the viewer’s position – the camera only sees IR LEDs anyway. The tradeoff is that you had to wear two IR LEDs on your head, calibrate it just right, and that only the person with the headset on gets the illusion just right.

This is why re-visiting the past can be fruitful. As [Russ] discovered, computing power is so plentiful these days that you could do face/eye position estimation with a normal webcam easier than you could source an old Wiimote. Indeed, he’s getting the positioning so accurate that he’s worried about to which eye he’s projecting the illusion. Clearly, it’s time for a revamp.

So here’s the formula: find a brilliant old hack, and notice if it was hampered by the state of technology back when it was done. Update this using modern conveniences, and voila! You might just find that you can take the idea further, simply because you have more tools in your toolbox. Nothing wrong with standing on the shoulders of giants.

But beware! Time isn’t sitting still for you either. As soon as you make your killer 3D vision hack, VR goggles will become cheap and ubiquitous. So get it done today, before your hack becomes inspiration for the future.

Photography, The Stereo Way

Most consumer-grade audio equipment has been in stereo since at least the 1960s, allowing the listener to experience sounds with a three-dimensional perspective as if they were present when the sound was originally made. Stereo photography has lagged a little behind the stereo audio trend, though, with most of the technology existing as passing fads or requiring clumsy hardware to experience fully. Not so with the DIY stereoscopic cameras like this one produced by this group of 3D photography enthusiasts, who have also some methods to view the photos in 3D without any extra hardware.

The camera uses two imaging sensors to produce a stereo image. One sensor is fixed, and the other is on a slider which allows the user to adjust the “amount” of 3D effect needed for any particular photo. [Jim] is using this camera mostly for macro photography, which means that he only needs a few millimeters of separation between the two sensors to achieve the desired effect, but for more distant objects more separation can be used. The camera uses dual Raspberry Pi processors, a lithium battery, and a touch screen interface. It includes a ton of features as well including things like focus stacking, but to get a more full experience of this build we’d highly recommend checking out the video after the break.

As for viewing the photographs, these stereoscopic 3D images require nothing more than a little practice to view them. This guide is available with some simple examples to get started, and while it does at first feel like a Magic Eye puzzle from the late 90s, it quickly becomes intuitive. Another guide has some more intricate 3D maps at the end to practice on as well. This is quite the step up from needing to use special glasses or a wearable 3D viewer of some sort. There are also some methods available to create 3D images from those taken with a regular 2D camera as well.

Thanks to [Bill] for the tip and the additional links to the guides for viewing these images!

Continue reading “Photography, The Stereo Way”

small actor on giant table

NERF – Neural Radiance Fields

Making narrative film just keeps getting easier. What once took a studio is now within reach of the dedicated hobbyist. And Neural Radiance Fields are making it a dramatic step easier. The guys from [Corridor Crew] give an early peek.

Filming and editing have reached the cell phone and laptop stage of easy. But sets, costumes, actors, lighting, and so on haven’t gotten substantially cheaper, and making your own short film is still a major project.

Enter 3D graphics. With a good gaming laptop, anybody can make a photorealistic scene in Blender and place live action actors in it. But it takes both a lot of skill and work. And often, the scene you’re making is available as  a real place, but you can’t get permission to film or haul actors, props, crew, and so on to the set.

A new technology, NERF, for “NEural Radiance Fields”, has decreased the headaches a lot.  Instead of making a 3D model of the scene and using that to predict what reaches the camera, the software starts with video of the scene and machine learns a “radiance field” – a model of how light is reflected by the scene. Continue reading “NERF – Neural Radiance Fields”

Blender Builds LEGO Models

Blender is a free and open source computer graphics package that’s used in the production of everything from video games to feature films. Now, as demonstrated by [Joey Carlino], the popular program can even be used to convert models into LEGO.

This new feature available in Blender 3.4 allows for the use of instance attributes in a way that a large number of points on a model can be created without causing undue strain on (and possible crashing of) the software. Essentially, an existing model is split into discrete points at specific intervals. The spacing of the intervals is set to be exactly that of LEGO bricks, which gives the model the low-resolution look of a real LEGO set. From there, a model brick is created and placed at each of these points, and then colors can be transferred to the bricks individually.

The demonstration that [Joey] uses is converting a beach ball model to LEGO, but using these tools on other models delivers some striking results. He goes over a lot of the details on how to create these, and it would only be a short step from there to ordering the bricks themselves. Or, using these models and sending them over to a 3D printer straight from Blender itself. Not bad for free software!

Continue reading “Blender Builds LEGO Models”