Car Radio Chip Goes Into DIY Build

[Sjef Verhoeven] still loves radio and enjoys the challenge of listening to radio signals from far away. He wanted to build his own radio and turned to the TEF6686 chip, a device often found in car radios. It is known to be very sensitive and seemed perfect for pulling in weak signals. So [Sjef] built this DIY radio and shares the details in this recent Spectrum post.

Unlike older radio-on-chip devices, the TEF6686 is a DSP, which, according to the post, is part of the reason it is ultrasensitive. Even though it is made for car radios, the device is versatile and can pick up shortwave as well as the usual broadcast bands, with the right configuration.

Continue reading “Car Radio Chip Goes Into DIY Build”

Hackaday Links Column Banner

Hackaday Links: May 5, 2024

It may be hard to believe, but BASIC turned 60 this week. Opinions about the computer language vary, of course, but one thing everyone can agree on is that Professors Kemeny and Kurtz really stretched things with the acronym: “Beginner’s All-Purpose Symbolic Instruction Code” is pretty tortured, after all. BASIC seems to be the one language it’s universally cool to hate, at least in its current incarnations like Visual Basic and VBA. But back in 1964, the idea that you could plunk someone down in front of a terminal, or more likely a teletype, and have them bang out a working “Hello, world!” program with just a few minutes of instruction was pretty revolutionary. Yeah, line numbers and GOTO statements encouraged spaghetti code and engrained bad programming habits, but at least it got people coding. And perhaps most importantly, it served as a “gateway drug” into the culture for a lot of us. Many of us would have chosen other paths in life had it not been for those dopamine hits provided by getting that first BASIC program working. So happy birthday BASIC!

Continue reading “Hackaday Links: May 5, 2024”

Hacking And Working On The Go

I’m off visiting my parents for a while, and have managed to bring nearly everything along with me that I need to get work done, and it all fit in a small backpack! This includes a portable audio interface to run my podcast mic, two (count them) two Linux computers, and all manner of simple hacking tools. Microcontrollers with USB/serial adapters built in are a godsend.

But putting together the minimal setup was no easy task! Alone the USB cable assortment I had to bring was astounding. And in the end, it looks like I forgot a USB-B mini, and good luck finding that at the local drug store. (I know! But the Zoom recorder wants mini. Don’t ask me why.)

And then there’s the power adapters — brick for the laptop, USB-C fast charger for the Steam Deck, another wall-plug USB for recharging the power banks. And of course, this silly custom keyboard which I’m so used to typing on, and which embodies so much muscle memory in its macros that I’m practically helpless without it.

So fundamentally, I’m astounded by the amount of functionality I could cram into my pack, but I’m also aghast at all the little things that add up around the edges. And I’m sure that I’ll find stuff that I’m missing in the next few weeks.

Do you need to travel for work with your full kit? What’s your approach? Minimal? Maximal? Leave us your hacker travel kit tips in the comments.

Hackaday Prize 2023: Bolt Bot Micro Servo Droids

This Hackaday prize entry from [saul] is the beginning of a reconfigurable kit of 3D printed parts and servo motors for robotics learning. With just access to a printer, a few cheap-as-chips servo motors, an Arduino, and some nuts and bolts, you could be hacking together robot walkers within a few hours of starting!

Bolt Bots is very simple to understand, with all the mechanics and wiring out there in the breeze, but strictly for indoor use we reckon. If you want to add remote control to your application, then drop in one of the ubiquitous nRF24L01 boards and build yourself a copy of the remote control [saul] handily provides in this other project.

There really isn’t a great deal we can say about this, as it’s essentially a build kit with quite a few configuration options, and you just have to build with it and see what’s possible. We expect the number of parts to proliferate over time giving even more options. So far [saul] demonstrates a few flavors of ‘walkers’, a rudimentary ‘robot arm’, and even a hanging drawbot.

The bolt hardware can be found in this GitHub repo, and the remote control code in this second one.

Servo-based designs are sometimes sneered at due to their dubious accuracy and repeatability, but with a little of effort, this can be vastly improved upon. Also, multi-legged walkers need multiple servos and controllers to drive ’em. Or do they?

Continue reading “Hackaday Prize 2023: Bolt Bot Micro Servo Droids”

3D Printed Light Pipe Turns Overly-Bright LED Into Design Harmony

There are a number of ways to efficiently and elegantly limit an LED’s brightness, but [Tommy] found that using a light pipe or diffuser can integrate better with a device, especially when the device itself is mostly 3D printed in the first place.

Infill has an effect on appearance. 20% infill on the left, 100% infill on the right.

For some problems the Goldilocks approach is the way to go. [Tommy] designed a small array of different LED cover options, and tested each to see what yielded the best results for his printed kit. Some of the biggest takeaways include:

  • 100% infill is best for even results (although interesting shadows happen at less than 100% infill.)
  • Interesting things happen with 7 to 11 mm of top layers of clear PLA, when illuminated from below with a 5 mm high-brightness LED. An even diffusion of light starts to give way to a circular gradient as the upper layer gets thicker.
  • LEDs emit their light mainly upward in a round pattern. Corners will always be darker, even more so if the guide is not round. This effect becomes noticeably more pronounced as the light guide grows in size, putting a practical upper limit on its effective dimensions.

[Tommy] explores these kinds of issues because he designs and builds electronic synth instruments, and they are mostly 3D printed. He explores efficiency and is always happy to share his findings about what works and doesn’t work.

Of course, the usual ways to deal with an overly-bright LED are to limit its current or control its brightness by driving it with a PWM signal. The right approach depends on the application and the scale of the design, and there are actually quite a few ways to crack this nut. Luckily, our own [Inderpreet Singh] is here to tell you all about how best to control LED brightness.

Velomobile Gets Electric Assist

What do you get when you throw all accepted bicycle designs out the window and start fresh? Well, it might look a bit like [Saukki’s] velomobile.

Most bikes come in a fairly standard, instantly-recognizable shape which has been popular for over a century now. While it’s a vast improvement over its predecessor, the penny-farthing bicycle, there’s no reason that a bike needs to have this two-triangle frame shape other than that a pretentious bicycle racing standards group says they have to. If you want to throw their completely arbitrary rulebook out of the window, though, you can build much more efficient, faster bikes like recumbents or even full-fairing velomobiles. And if you want to go even faster than that, you can always add a standard ebike motor kit to one.

This is a lot harder than putting a motor on a normal bicycle. Bicycles tend to have standardized parts and sizes, and [Saukki]’s velomobile is far from the standard bike. First, he needed custom mounts for the display and also for the battery, which he needed to make extra wide so its weight wouldn’t rip through the carbon fiber body. The emergency brake lever motor cutoff needed to be dismantled to work with his control system too, and finally the mid-drive motor needed a custom mount as well. It’s a TSDZ2 motor that comes with torque-sensing pedal assist.

The changes didn’t stop there. The velomobile max speed is much higher than a standard bike. This called for some gear ratio changes, in the form of a monster 60-tooth chain ring.

This leads to the one major problem with this build which is that the velomobile can achieve such high speeds on its own that the electric assist cuts out for most of the ride. There is a legal requirement over much of Europe that e-bikes only have pedal assist (without a throttle) and that they stop assisting above a specific speed. But if you want to build an e-bike that pushes the boundary of the law instead of strictly adhering to it, take a look at this one which uses a motor from a washing machine.

Continue reading “Velomobile Gets Electric Assist”

Build Your Own 3D Printed Bluetooth Headphones

A few years back, [Shannon Ley] wondered how hard it would be to build a pair of Bluetooth headphones from scratch. Today, we have our answer. The Homebrew Headphones website is devoted to just one thing: explaining how you can use common components and some 3D printed parts to build an impressively comprehensive pair of wireless headphones for around $50 USD.

The headphones pair a CSR8645 Bluetooth audio receiver with a TP4056 USB-C charging module, a 500 mAh LiPo pouch battery, a pair of Dayton Audio CE38MB-32 drivers, and replacement ear covers designed for the Bose QuietComfort QC15. Some perfboard, a couple buttons, a resistor, and an LED round out the parts list.

All of the components fit nicely into the meticulously designed 3D printed frame, and assembly is made as simple as possible thanks to an excellent step-by-step guide. It’s all so well documented that anyone with even basic soldering experience should be able to piece it together without too much fuss.

Of course, these aren’t the first 3D printed headphones we’ve ever seen. But the quality of the documentation and attention to detail really make these stand out.