Color-Tunable LEDs Open Up Possibilities Of Configurable Semiconductors

The invention of the blue LED was groundbreaking enough to warrant a Nobel prize. For the last decade, researchers have been trying to take the technology to the next level by controlling the color of emission while the device is in operation. In a new research paper, by the guys over Osaka University, Lehigh University, the University of Amsterdam and West Chester University have presented a GaN LEDs that can be tuned to emit different colors from the same substrate.

GaN or Gallium nitride is a wide band-gap semiconductor that has been employed in the manufacturing of FETs that are known to have higher power density due to its high thermal capacity while increasing efficiency. In the the case of the tunable LED, the key has been the doping with Europium for creating energy bands. When an electron jumps from a higher band to a lower band, it emits energy in the form of light and the wavelength or color depends on the gap of energy jumped as per Plank-Einstein equation.

By controlling the current density and duty cycle, the energy jumps can be controller thereby controlling the color being emitted. This is important since it opens up the possibility of control of LEDs post production. External controllers could be used with the same substrates i.e. same LEDs to make a lamp of different intensity as well as color without needing different doping for R,G and B emissions. The reduction in cost as well as size could be phenomenal and could pave the way for similar semiconductor research.

We have covered the details of the LED in the past along with some fundamentals on the control techniques. We are hoping for some high speed color accurate displays in the future that don’t break the bank on our next gaming build.

Thanks for the tip [Qes]

No, Your 3D Printer Doesn’t Have A Fingerprint

Hackers and makers see the desktop 3D printer as something close to a dream come true, a device that enables automated small-scale manufacturing for a few hundred dollars. But it’s not unreasonable to say that most of us are idealists; we see the rise of 3D printing as a positive development because we have positive intentions for the technology. But what of those who would use 3D printers to produce objects of more questionable intent?

We’ve already seen 3D printed credit card skimmers in the wild, and if you have a clear enough picture of a key its been demonstrated that you can print a functional copy. Following this logic, it’s reasonable to conclude that the forensic identification of 3D printed objects could one day become a valuable tool for law enforcement. If a printed credit card skimmer is recovered by authorities, being able to tell how and when it was printed could provide valuable clues as to who put it there.

This precise line of thinking is how the paper “PrinTracker: Fingerprinting 3D Printers using Commodity Scanners” (PDF link) came to be. This research, led by the University at Buffalo, aims to develop a system which would allow investigators to scan a 3D printed object recovered from a crime scene and identify which printer was used to produce it. The document claims that microscopic inconsistencies in the object are distinctive enough that they’re analogous to the human fingerprint.

But like many of you, I had considerable doubts about this proposal when it was recently featured here on Hackaday. Those of us who use 3D printers on a regular basis know how many variables are involved in getting consistent prints, and how introducing even the smallest change can have a huge impact on the final product. The idea that a visual inspection could make any useful identification with all of these parameters in play was exceptionally difficult to believe.

In light of my own doubts, and some of the excellent points brought up by reader comments, I thought a closer examination of the PrinTracker concept was in order. How exactly is this identification system supposed to work? How well does it adapt to the highly dynamic nature of 3D printing? But perhaps most importantly, could these techniques really be trusted in a criminal investigation?

Continue reading “No, Your 3D Printer Doesn’t Have A Fingerprint”

Soft Rotating Pneumatic Actuators

When we think of pneumatic actuators, we typically consider the standard varieties of pneumatic cylinder, capable of linear motion. These can be referred to as “hard” actuators, made of rigid components and capable of great accuracy and force delivery. However, “soft” actuators have their own complementary abilities – such as being able to handle more delicate tasks and being less likely to injure human operators when used in collaborative operations. The Whitesides Research Group at Harvard University has undertaken significant research in this field, and released a paper covering a novel type of soft pneumatic actuator.

The actuator consists of a series of soft, flexible sealed chambers which surround a wooden dowel in the center. By applying vacuum to these various chambers, the dowel in the center can be pulled into up to eight different positions. It’s a unique concept, and one we can imagine could have applications in various material processing scenarios.

The actuator was built by moulding elastomers around 3D printed components, so this is a build that could theoretically be tackled by the DIYer. The paper goes into great detail to quantify the performance of the actuator, and workshops several potential applications. Testing is done on a fluid delivery and stirring system, and a tethered robotic walker was built. The team uses the term cVAMS – cyclical vacuum actuated machine – to describe the actuator technology.

The world of soft robotics is a hot bed of development, and we look forward to further work in this field. It’s not just Harvard, either – we’ve seen interesting work from Yale and from the Hackaday community too!

 

Superdeep Borehole Samples Create Non-boring Music

In the 1970s, the Soviet Union decided to dig a hole for science. Not just any hole, the Kola Superdeep Borehole reached a depth of over 12 kilometers, the deepest at the time and the second deepest today by just a few meters. Since this was one of the few holes dug this deep that wasn’t being drilled for oil, the project was eventually abandoned. [Dmitry] was able to find some core samples from the project though, and he headed up to the ruins of the scientific site with his latest project which produces musical sounds from the core samples.

The musical instrument uses punched tape, found at the borehole site, as a sort of “seed” for generating the sounds. Around the outside of the device are five miniature drilling rigs, each holding a piece of a core sample from the hole. The instrument uses the punched tape in order to control the drilling rigs, and the sound that is created is processed by the instrument and amplified, which creates some interesting and rather spooky sounds. The whole thing is controlled by an Arduino Mega.

Not only does the project make interesting sounds from a historically and scientifically significant research station and its findings, but the project has a unique and clean design that really fits its environment at the abandoned facility. The other interesting thing about this project is that, if you want to make the trek, anyone can go explore the building and see the hole for themselves. If you’re wondering about the tools that could be used to make a hole like this, take a look at this boring project.

Continue reading “Superdeep Borehole Samples Create Non-boring Music”

Touch Anything And Everything

Powering IoT devices is often a question of batteries or mains power, but in rare exceptions to this rule there is no power supply (PDF Warning). At the University of Wisconsin-Madison and the University of California, San Diego, researchers have gone the extra mile to make advanced backscatter devices, and these new tags don’t need the discrete components we have seen in previous versions. They are calling it LiveTag, and it doesn’t need anything aside from a layer of foil printed or etched on a flexible ceramic-PTFE laminate. PTFE is mostly seen in the RF sector as a substrate for circuit boards.

We have seen some of the wild creations with wifi backscatter that range from dials to pushbuttons. RF backscatter works by modulating the RF signals in which we are continuously swimming. Those radio waves power the device and disrupt the ambient signals, which disruption can be detected by a receiver. With a BOM that looks like a statement more than a list, integration with many devices becomes a cost-effective reality. Do not however broadcast important data because you cannot expect great security from backscatter.

[Via IEEE Spectrum]

Source Of Evil – A Botnet Code Collection

In case you’re looking for a variety of IRC client implementations, or always wondered how botnets and other malware looks on the inside, [maestron] has just the right thing for you. After years of searching and gathering the source code of hundreds of real-world botnets, he’s now published them on GitHub.

With C++ being the dominant language in the collection, you will also find sources in C, PHP, BASIC, Pascal, the occasional assembler, and even Java. And if you want to consider the psychological aspect of it, who knows, seeing their malicious creations in their rawest form might even give you a glimpse into the mind of their authors.

These sources are of course for educational purposes only, and it should go without saying that you probably wouldn’t want to experiment with them outside a controlled environment. But in case you do take a closer look at them and are someone who generally likes to get things in order, [maestron] is actually looking for ideas how to properly sort and organize the collection. And if you’re more into old school viruses, and want to see them run in a safe environment, there’s always the malware museum.

Rachel Wong Keynote: Growing Eyeballs In The Lab And Building Wearables That Enhance Experience

The keynote speaker at the Hackaday Belgrade conference was Rachel “Konichiwakitty” Wong presenting Jack of All Trades, Master of One. Her story is one that will be very familiar to anyone in the Hackaday community. A high achiever in her field of study, Rachel has learned the joy of limiting how much energy she allows herself to expend on work, rounding out her life with recreation in other fascinating areas.

There are two things Rachel is really passionate about in life. In her professional life she is working on her PhD as a stem cell researcher studying blindness and trying to understand the causes of genetic blindness. In her personal life she is exploring wearable technology in a way that makes sense to her and breaks out of what is often seen in practice these days.

Continue reading “Rachel Wong Keynote: Growing Eyeballs In The Lab And Building Wearables That Enhance Experience”