Eye-Tracking Device Is A Tiny Movie Theatre For Jumping Spiders

The eyes are windows into the mind, and this research into what jumping spiders look at and why required a clever device that performs eye tracking, but for jumping spiders. The eyesight of these fascinating creatures in some ways has a lot in common with humans. We both perceive a wide-angle region of lower visual fidelity, but are capable of directing our attention to areas of interest within that to see greater detail. Researchers have been able to perform eye-tracking on jumping spiders, literally showing exactly where they are looking in real-time, with the help of a custom device that works a little bit like a miniature movie theatre.

A harmless temporary adhesive on top (and a foam ball for a perch) holds a spider in front of a micro movie projector and IR camera. Spiders were not harmed in the research.

To do this, researchers had to get clever. The unblinking lenses of a spider’s two front-facing primary eyes do not move. Instead, to look at different things, the cone-shaped inside of the eye is shifted around by muscles. This effectively pulls the retina around to point towards different areas of interest. Spiders, whose primary eyes have boomerang-shaped retinas, have an X-shaped region of higher-resolution vision that the spider directs as needed.

So how does the spider eye tracker work? The spider perches on a tiny foam ball and is attached — the help of a harmless and temporary adhesive based on beeswax — to a small bristle. In this way, the spider is held stably in front of a video screen without otherwise being restrained. The spider is shown home movies while an IR camera picks up the reflection of IR off the retinas inside the spider’s two primary eyes. By superimposing the IR reflection onto the displayed video, it becomes possible to literally see exactly where the spider is looking at any given moment. This is similar in some ways to how eye tracking is done for humans, which also uses IR, but watches the position of the pupil.

In the short video embedded below, if you look closely you can see the two retinas make an X-shape of a faintly lighter color than the rest of the background. Watch the spider find and focus on the silhouette of a tasty cricket, but when a dark oval appears and grows larger (as it would look if it were getting closer) the spider’s gaze quickly snaps over to the potential threat.

Feel a need to know more about jumping spiders? This eye-tracking research was featured as part of a larger Science News article highlighting the deep sensory spectrum these fascinating creatures inhabit, most of which is completely inaccessible to humans.

Continue reading “Eye-Tracking Device Is A Tiny Movie Theatre For Jumping Spiders”

Four More Talks Added To The 2021 Remoticon Lineup

We’ve already unveiled multiple keynote speakers and a slate of fascinating presenters that will be showing off everything from reverse engineering vintage calculators to taking those first tentative steps on your CAD journey for this year’s Remoticon. You’d be forgiven for thinking that’s everything you’ll see at the conference, but there’s still plenty to announce before the two-day virtual event kicks off on November 19th. Normally we’d be promising to make sure you get your money’s worth, but since tickets are completely free, we’re shooting a bit higher than that.

We were blown away by the number of fantastic talk proposals we received during this year’s extended call. Let’s take a look at the next four presenters who will be joining us for the 2021 Hackaday Remoticon on November 19th through the 20th.

Continue reading “Four More Talks Added To The 2021 Remoticon Lineup”

GamecubePC Puts a PC into a Gamecube chassis

GamecubePC Packs Plenty Of Punch Into GameCube Plastics

If reading Hackaday teaches us anything, it’s that there is a subset of hackers who take things like emulator builds a step farther than most. [RetroModder] is very clearly one such hacker. Enter the GamecubePC, which you can read about on Hackaday.io. The GamecubePC is a multi-year project that aims to stuff an entire Windows 10 PC into a GameCube shell while still being able to play Wii and GameCube titles at native resolution and performance.

Internals of the GamecubePC with all the custom chassis and PCB's on display
Internals of the GamecubePC with all the custom chassis and PCB’s on display

Although it only takes a spare computer and the Dolphin emulator to make a GameCube and Wii emulator, great attention has been paid to keeping the GameCube at the forefront. Contributing to the illusion is the preservation of the original GameCube power switch and reset buttons by way of custom PCB’s that interface the parts to the mSTX motherboard.

The bottom of the GameCube shell is replaced with a 3D printed base that mounts the motherboard while smartly giving access to the motherboard’s front panel. The minuscule motherboard sports an Intel Core™ i5-7600 with 8GB memory, and SSD storage. Topping off the experience are four functional controller ports that can be switched to be used with the emulator or with PC games too. Surely the GamecubePC will be the subject of many double takes!

Custom game builds are no stranger to Hackaday, and you might appreciate this portable Wii that can play Wii and GameCube games or this GameCube controller hacked into a Joycon for the Nintendo Switch.

Edit from the far future: it’s now a project on Tindie.  Check it out.

Speaker ‘Stun Gun’ Aims To Combat China’s Dancing Grannies

One of the more popular social activities in China is group dancing in public squares. Often the pastime of many middle-aged and older women, participants are colloquially referred to as “dancing grannies.” While the activity is relatively wholesome, some dancers have begun to draw the ire of their neighbourhoods with their loud music and attempts to dominate the use of public parks and recreational areas.

Naturally, a technological solution sprung up promising to solve the problem. The South China Morning Post has reported on a “stun gun” device which claims to neutralise speakers from a distance, in an effort to shut down dance gatherings. The device created a huge stir on social media, as well as many questions about how it could work. It’s simpler, and a bit less cool, than you think. Continue reading “Speaker ‘Stun Gun’ Aims To Combat China’s Dancing Grannies”

This robot costume is really robotic!

Really Robotic Robot Costume Will Probably Win The Contest

Still don’t have anything to wear to that Halloween party this weekend? Or worse, your kid hasn’t decided on a costume that you both can agree on? Well, look no further than [Natasha Dzurny]’s Sally Servo the Really Robotic Robot Costume and accompanying multi-part build guide. You might want to start by raiding that recycle bin for cardboard, because you’re going to need a lot of it.

This realistic robot costume even has a sound-reactive mouth.What you won’t need a lot of is hard-to-source parts, at least if you build it the [Natasha] and Brown Dog Gadgets way. Even so, there are a ton of cool moving and blinking bits and bobs to be made with servos, LEDs, and RGB LEDs connected up to something kid-friendly like the Micro:bit and the Brown Dog Gadgets Bit Board — that’s a base for the :bit that lets users connect components via LEGO and conductive tape.

Between Sally’s robotic googly eyes and her light-up belt, there are plenty of ideas here to steal and make your own, and each one is packaged in a great-looking guide complete with paper printing templates.

Our favorite part has to be the infinity mirror heart, which appears to be beating thanks to clever programming. That, and the costume details, like the waist-area wires running between the upper and lower pieces.

Is the party at your house? There’s probably still enough time to put together a projector-based stomping game for the driveway.

A robotic arm uses artificial muscles powered by water to lift a 7 kg barbell.

Taking A Stroll Down Uncanny Valley With The Artificial Muscle Robotic Arm

Wikipedia says “The uncanny valley hypothesis predicts that an entity appearing almost human will risk eliciting cold, eerie feelings in viewers.” And yes, we have to admit that as incredible as it is, seeing [Automaton Robotics]’ hand and forearm move in almost human fashion is a bit on the disturbing side. Don’t just take our word for it, let yourself be fascinated and weirded out by the video below the break.

While the creators of the Artificial Muscles Robotic Arm are fairly quiet about how it works, perusing through the [Automaton Robotics] YouTube Channel does shed some light on the matter. The arm and hand’s motion is made possible by artificial muscles which themselves are brought to life by water pressurized to 130 PSI (9 bar). The muscles themselves appear to be a watertight fiber weave, but these details are not provided. Bladders inside a flexible steel mesh, like finger traps?

[Automaton Robotics]’ aim is to eventually create a humanoid robot using their artificial muscle technology. The demonstration shown is very impressive, as the hand has the strength to lift a 7 kg (15.6 lb) dumbbell even though some of its strongest artificial muscles have not yet been installed.

A few years ago we ran a piece on Artificial Muscles which mentions pneumatic artificial muscles that contract when air pressure is applied, and it appears that [Automaton Robotics] has employed the same method with water instead. What are your thoughts? Please let us know in the comments below. Also, thanks to [The Kilted Swede] for this great tip! Be sure to send in your own tips, too!

Continue reading “Taking A Stroll Down Uncanny Valley With The Artificial Muscle Robotic Arm”

New Raspberry Pi Zero 2 Upgrades To Quad-Core Processor

Over the years, we’ve seen a steady stream of updates for the Raspberry Pi Foundation’s flagship single-board computer (SBC), with each new release representing a significant boost in processing power and capability. But the slim Raspberry Pi Zero, released all the way back in 2015, hasn’t been quite so fortunate. Beyond the “W” revision that added WiFi and Bluetooth in 2017, the specs of the diminutive board have remained unchanged since its release.

That is, until now. With the introduction of the $15 USD Raspberry Pi Zero 2 W, the ultra-compact Linux board gets a much-needed performance bump thanks to the new RP3A0 system-in-package, which combines a Broadcom BCM2710A1 die with 512 MB of LPDDR2 SDRAM and a quad-core 64-bit ARM Cortex-A53 CPU clocked at 1 GHz. In practical terms, the Raspberry Pi Foundation says the new Zero 2 is five times as fast as its predecessor with multi-threaded workloads, and offers a healthy 40% improvement in single-threaded performance. That puts it about on par with the Raspberry Pi 3, though with only half the RAM.

Otherwise, the new Zero 2 isn’t much different from the original. It’s the same size and shape, meaning existing cases or mounts should work fine. You’ll also find the micro SD slot, CSI camera connector, dual micro USB ports, and mini HDMI port in the same places they were in 2015.

Frankly we’re a little surprised they didn’t switch over to USB-C (at least for the power port) and micro HDMI to bring it in line with the Pi 4, but of course, they presumably didn’t want to break compatibility with existing Zero projects. At least we won’t have to wait for a second edition to add wireless, as the Zero 2 W offers 2.4 GHz 802.11 b/g/n WiFi and Bluetooth 4.2 out of the box.

We’ll have samples of the new Zero 2 W in hand shortly, so keep an eye out for a detailed overview of this highly anticipated new member of the Pi family. In the meantime, let us know what you think about the new hardware in the comments. Is it a worthy successor to the original $5 Pi Zero?