Solar Power For Chernobyl’s Second Generation Of Electricity

When featuring cool hacks repurposing one thing for something else, we prefer to focus on what we could get our hands on and replicate for ourselves. Not this one, though, as nobody else has the misfortune of being responsible for 2,000 square kilometers (772 square miles) of radioactive contaminated land like the government of Ukraine. Trying to make the best of what they have, they’ve just launched a pilot program working to put up solar power farms inside the Chernobyl Exclusion Zone.

This is sure to invite some jokes in the comments section, but the idea has merit. Thirty years of weather has eroded the worst aftermath of the Chernobyl explosion. That area is no longer immediately lethal and people have been making short visits. Spanning from safety inspectors, to scientists, to curious adventurers with questionable judgement making television shows. Supposedly, by following rules on what not to do, it’s possible to keep radiation exposure of a short visit down to the level experienced by frequent fliers. But that’s still too much radiation for long-term stay. That means no homes, office parks, or factories. No agriculture either, as plants and animals grown in the area should not be eaten.

So what’s left? That’s what Ukraine has been struggling with, as it tried to figure out something positive to offset the headaches of monitoring the area.

Well, next to the defunct power plant is the electric distribution infrastructure it used to feed into, and photovoltaic power generation requires little human oversight. Some maintenance will be required, but hopefully someone has worked out how to keep maintenance workers’ cumulative exposure to a minimum. And if this idea pans out, clean renewable energy would start flowing from the site of one of the worst ecological disasters of our era. That makes it a worthwhile hack on a grand scale.

[via Gizmodo]

This Rocket Cookstove Is Hot Stuff!

If you search the web, you will learn that humans began to cook their food with fire a long time ago. Indeed, you might expect that there would be nothing new in the world of  flame-based cookery. Fortunately [Bongodrummer] didn’t get that particular memo, because he’s created a rather unusual rocket stove griddle that is capable of cooking a significant quantity of food.

A rocket stove is designed to achieve as efficient use of energy as possible by achieving the most complete burn of high surface area fuel. It features a small combustion area and a chimney with supplementary air feed to ensure that exhaust gasses also burn. This one feeds all those hot gasses directly to the griddle, before taking them away up a pair of flues. As an added bonus there is a dome attachment for a pizza oven, made when a previous project had some left-over building material. Take a look at the comprehensive build video below the break.

Perhaps alarmingly the combustion chamber and chimney are made from a gas cylinder, but the use of a central heating radiator for the griddle is an extremely good idea. A vortex air inlet at the bottom and a secondary air injector further up the chimney complete the unit, making for a worthy replacement for a traditional barbecue.

It’s worth saying, this isn’t the first rocket stove we’ve seen, there was this simple design as well as this very well engineered space heater.

Continue reading “This Rocket Cookstove Is Hot Stuff!”

Box Forts For Adults: Best Practices And Design Strategies

Many a grown up can reminisce about building various architectural wonders in their youth. Forts, whether based on boxes or blankets, were the order of the day, and an excellent way to spend a rainy Sunday afternoon.

It just so happens that there is no law against scaling up such activities once one has reached the age of majority. However, to build a structure at this level takes some careful planning and consideration, and that is the purpose of our article here today.

Location, Location, Location

To avoid an awkward conflict, be sure to warn your housemates of impending construction well ahead of time.

The first major consideration when starting your build should be the area in which you wish to do it. Building inside has the advantage of avoiding the weather, however hard floors can lead to sore knees when crawling around. Additionally, you’re a grown up now, so it’s less likely your peers will be impressed to hear you sat inside a box in your living room.

No, if you’re going to do this right, you’ll want to go outside. A nice flat lawn is best, providing soft ground and plenty of space. The challenges of the elements will guide your work – sitting inside your cardboard home feels all the more satisfying when you’re cosy and dry as you listen to the patter of rain on the roof. There’s a real sense of accomplishment when you’ve built something that can survive the harsh outdoors, and besides, the views are better, too. Continue reading “Box Forts For Adults: Best Practices And Design Strategies”

Talking Garbage Can Keeps Eye On Playground

Getting young kids excited about technology and engineering can be a challenge, and getting them interested in the environment isn’t exactly a walk in the park either. So any project that can get them simultaneously engaged in both is a considerable achievement, especially when they can do the work themselves and see how creating something can have a positive impact on their little corner of the world.

[Robert Hart] writes in to tell us about a project that challenged elementary school students to help make sure their peers put trash in its place. The kids came up with some predictably imaginative ideas like a robot to chase down litterers, but as us grown up hackers know all too well, budget and practicality often end up dictating the project’s final form. In the end, they came up with a talking trash can that gives words of encouragement to passerby.

The heart of the system is an Adafruit Audio FX sound board, which has been loaded up with audio clips recorded by the students. The buttons on the front of the can trigger different messages about why it’s important to make sure trash is disposed of properly, and an internal switch allows the can to thank the user for their deposit when the lid has been opened.

A PIR sensor on the front of the can detects when somebody gets close, and plays a message reminding them to make use of the trash cans provided on the playground. It’s not everyday that a child has a garbage can talk to them, so we think this is a fantastic idea for getting a kid’s attention. In keeping with the ecological friendly theme, the whole system is powered by a small solar panel which charges an internal 3.7V LiPo battery with the help of an Adafruit PowerBoost 500.

We’ve seen plenty of unusual projects here at Hackaday, but even for us, a talking garbage can is something of a rarity. Ironically though, we have seen a garbage can which can follow you around, so maybe the kids weren’t so far off with their original idea after all…

Continue reading “Talking Garbage Can Keeps Eye On Playground”

When Every Last Nanoamp Matters

You can get electricity from just about anything. That old crystal radio kit you built as a kid taught you that, but how about doing something a little more interesting than listening to the local AM station with an earpiece connected to a radiator? That’s what the Electron Bucket is aiming to do. It’s a power harvesting device that grabs electricity from just about anywhere, whether it’s a piece of aluminum foil or a bunch of LEDs.

The basic idea behind the Electron Bucket is to harvest ambient radio waves just like your old crystal radio kit. There’s a voltage doubler, a rectifier, and as a slight twist, a power management circuit that would normally be found in battery-powered electronics.

Of course, this circuit can do more than harvesting electricity from ambient radio waves. By connecting a bunch of LEDs together, it’s possible to send a few Bluetooth packets around. This is pretty impressive — the circuit is using LEDs as solar cells, which normally produce about 50nA of current at 0.5V in direct sunlight. By connecting 12 LEDs in parallel and series, it manages to harvest just enough energy to run a small wireless module. That’s impressive, and an interesting entry to the Power Harvesting Challenge in this year’s Hackaday Prize.

DIY Wind Turbine For Where The Sun Doesn’t Shine

There are plenty of places outside where you may like to have a project requiring electricity that may not get enough sun for solar power to be viable. Perhaps wind power could be used instead? [Greg] has a project to create a platform for using a small wind turbine to generate the power for your projects.

The wind turbine that [Greg] designing is a Savonius-style wind turbine that would put out between 5 and 12 volts. In a Savonius turbine, blades are mounted on a vertical axis allowing for a smaller, less complicated build than traditional horizontal axis wind turbines. The design is named for its inventor, Finnish engineer Sigurd Johannes Savonius.

After doing some research, the design will have a 2:1 height to blade ratio and use three pairs of overlapping curved blades stacked on top of each other, each pair offset by 120 degrees. This design, [Greg] figures, will come within a few percentage points of the efficiency of more exotic blade shapes while making the windmill easy to design and implement. Being half cylinders, the blades can easily be made from existing objects cut in half – pop cans, for example, but there has been some designing the blades in Fusion 360 for 3D printing. The stator board has been designed and the initial prototypes of it and the rotor have arrived, so the testing can now commence.

Once the design is finalized and the prototype working, it’d be interesting to see some projects start showing up using wind power instead of solar power. Take a look at this design for a vertical wind turbine, and this design for a simple, straightforward turbine.

 

Power Generation Modules Mix And Match Wind, Water, And Hand Cranks

What’s great about the Power Generation Modules project headed by [Cole B] is the focus on usability and modularity. The project is a system for powering and charging small devices using any number and combination of generator modules: wind turbine, hand-crank, and water turbine so far. Power management and storage is handled by a separate unit that acts as a battery bank to store the output from up to six generators at once. There’s also a separate LED lamp module, designed to be capable of being powered directly from any of the generator modules if needed.

Testing the water turbine module

The hand crank is straightforward in concept, but key to usability was selecting a DC gearmotor with a gear ratio that made cranking by hand both comfortable and sustainable; too weak of a crank and it’s awkward, too hard and it’s tiring. The wind turbine has three compact vanes that turn a central shaft, but testing showed the brushless motor it uses as a generator isn’t a good match for the design; the wind turbine won’t turn well in regular wind conditions. The water turbine prototype showed great success; it consists of an epoxy-glazed, 5 inch diameter 3D printed propeller housed in a section of PVC pipe. The propeller drives a brushless motor which [Cole B] says easily outputs between eight to ten volts when testing in a small stream.

The team has plans for other generators such as solar, but this is a great start to an array of modules that can be used to power and charge small devices while off the grid. We’re happy to see them as a finalist for The Hackaday Prize; they were selected as one of the twenty projects to receive $1000 cash each in the Power Harvesting Challenge. The Human-Computer Interface Challenge is currently underway which seeks innovative ideas about how humans and computers can interface with one another, and twenty of those finalists will also receive $1000 each and be in the running for the Grand Prize of $50,000.