Assess Your Output With A Cheap DIY Urine Flowmeter

Some things about the human body are trivial to measure. Height, weight, blood pressure, pulse, temperature — these are all easily quantifiable with the simplest of instruments and can provide valuable insights into our state of health. Electrical activity in the heart and the brain can be captured with more complex instruments, too, and all manner of scopes can be inserted into various orifices to obtain actionable information about what’s going on.

But what about, err, going? Urine flow can be an important leading indicator for a host of diseases and conditions, but it generally relies on subjective reports from the patient. Is there a way to objectively measure how well urine is flowing? Of course there is.

The goal for [GreenEyedExplorer]’s simple uroflowmeter is simple: provide a cheap, easy to use instrument that any patient can use to quantify the rate of urine flow while voiding. Now, we know what you’re thinking — isn’t liquid flow usually measured in a closed system with a paddlewheel or something extending into the stream? Wouldn’t such a device for urine flow either be invasive or messy, or both? Rest assured, this technique is simple and tidy. A small load cell is attached to an ESP8266 through an HX711 load cell amp. A small pan on the load cell receives urine while voiding, and the force of the urine striking the pan is assessed by the software. Reports can be printed to share with your doctor, and records are kept to see how flow changes over time.

All kidding aside, this could be an important diagnostic tool, and at 10€ to build, it empowers anyone to take charge of their health. And since [GreenEyedExplorer] is actually a urologist, we’re taking this one seriously.

Continue reading “Assess Your Output With A Cheap DIY Urine Flowmeter”

The IoT (Internet Of Teeth)

Get ready for another step towards our dystopian future as scientists have invented a way to track and monitor what we eat. This 2mm x 2mm wireless sensor can be mounted on to teeth and can track everything that goes into your mouth. Currently it can monitor salt, glucose, and alcohol intake. The sensor then communicates wirelessly to a mobile device that tracks the data. Future revisions are predicted to monitor a wide range of nutrients and chemicals that can get ingested.

It uses an interesting method to both sense the target chemicals and communicate its data. It consists of a sandwich of three layers with the central layer being a biosensor that reacts to certain chemicals. The complete sandwich forms a tiny RFID antenna and when RF signals are transmitted to the device, some of the signal gets absorbed by the antenna and the rest reflected back.

The mechanism is similar to how chromatography works for chemical analysis where certain chemicals absorb light wavelengths of specific frequencies. Passing a calibrated light source through a gas column and observing the parts of the spectrum that get absorbed allows researchers to identify certain chemicals inside the column.

This technology is based on previous research with”tooth tatoos” that could be used by dentists to monitor your oral health. Now this tiny wireless sensor has evolved to monitoring the dietary intake of people for health purposes but we’re pretty sure Facebook is eyeing it for more nefarious purposes too.

3D Printed Stethoscope Makes The Grade

On the off chance that initiatives like the Hackaday Prize didn’t make it abundantly clear, we believe strongly that open designs can change the world. Putting technology into the hands of the people is a very powerful thing, and depending on where you are or your station in life, can quite literally mean the difference between life and death. So when we saw that not only had a team of researchers developed a 3D printable stethoscope, but released everything as open source on GitHub, it’s fair to say we were pretty interested.

The stethoscope has been in development for several years now, but has just recently completed a round of testing that clinically validated its performance against premium brand models. Not only does this 3D printed stethoscope work, it works well: tests showed its acoustic performance to be on par with the gold standard in medical stethoscopes, the Littmann Cardiology III. Not bad for something the researchers estimate can be manufactured for as little as $3 each.

All of the 3D printed parts were designed in OpenSCAD (in addition to a Ruby framework called CrystalSCAD), which means the design can be evaluated, modified, and compiled into STLs with completely free and open source tools. A huge advantage for underfunded institutions, and in many ways the benchmark by which other open source 3D-printable projects should be measured. As for the non-printed parts, there’s a complete Bill of Materials which even includes links to where you can purchase each item.

The documentation for the project is also exceptional. It not only breaks down exactly how to print and assemble the stethoscope, it even includes multi-lingual instructions which can be printed out and distributed with kits so they can be assembled in the field by those who need them most.

From low-cost ultrasounds to truly personalized prosthetics, the future of open source medical devices is looking exceptionally bright.

[Thanks to Qes for the tip]

Reverse Engineer An X-Ray Image Sensor

If you think of a medical x-ray, it is likely that you are imagining a photographic plate as its imaging device. Clipped to your tooth by your dentist perhaps, or one of the infamous pictures of the hands of [Thomas Edison]’s assistant [Clarence Madison Dally].

As with the rest of photography, the science of x-ray imaging has benefited from digital technology, and it is now well established that your hospital x-ray is likely to be captured by an electronic imaging device. Indeed these have now been in use for so long that their first generation can even be bought by an experimenter for an affordable sum, and that is what the ever-resourceful [Lucy Fauth] with the assistance of [Jana Marie Hemsing], has done. Their Trophy DigiPan digital x-ray image sensor was theirs for around a hundred Euros, and though it’s outdated in medical terms it still has huge potential for the x-ray experimenter.

The write-up is a fascinating journey into the mechanics of an x-ray sensor, with the explanation of how earlier devices such as this one are in fact linear CCD sensors which track across the exposed area behind a scintillator layer in a similar fashion to the optical sensor in a flatbed scanner. The interface is revealed as an RS422 serial port, and the device is discovered to be a standalone unit that does not require any commands to start scanning. On power-up it sends a greyscale image, and a bit of Sigrok examination of the non-standard serial stream was able to reveal it as 12-bit data direct from the sensor. From those beginnings they progressed to an FPGA-based data processor and topped it all off with a very tidy power supply in a laser-cut box.

It’s appreciated that x-rays are a particularly hazardous medium to experiment with, and we note from their videos that they are using some form of shielding. The source is a handheld fluoroscope of the type used in sports medicine that produces a narrow beam. If you remember the discovery of an unexpected GameBoy you will be aware that medical electronics seems to be something of a speciality in those quarters, as do autonomous box carriers.

Continue reading “Reverse Engineer An X-Ray Image Sensor”

Hacked 3D TV Glasses May Cure Lazy Eye

Lazy eye (technically Amblyopia) is a sight disorder that affects about 3% of the population where one eye is stronger than the other. Historically, treatment is via an eyepatch or special drops, but research shows that it may be better not to cover up the strong eye for long periods. It suggests that occluding the eye for short periods using a liquid crystal panel can yield better results. To that end, [Raninn] decided to hack some LCD glasses meant for 3D TV viewing to make a low-cost lazy eye treatment device.

This is his second version of [Raninn’s] glasses. The first one took two batteries and didn’t generate enough voltage for the LCD panels. The newer design uses a Dickson charge pump to generate a higher voltage from the battery and surface mount MOSFETs to switch voltages to the panels.

The write up is very complete with details about how to create even the PC board. He didn’t get into a lot of details about hacking the glasses. We assume that’s because your glasses may be different from his. These shutter glasses aren’t too complicated, you’ll just need to find the connections to the panel.

One of our favorite shutter glasses hacks came from [Dino] who built a set of automatic sunglasses for himself. Many of us wear glasses and for those with bifocals we keep waiting for an eyeglasses hack that makes automatic mult-focals a reality.

Print, Rinse, Wear. Nanowire Circuits For Your Microfibre Clothing.

While our bodies are pretty amazing, their dynamic nature makes integrating circuits into our clothing a frustrating process.  Squaring up against this challenge, a team of researchers from North Carolina State University have hit upon a potential boon for wearable electronics: silver nanowires capable of being printed on flexible, stretchy substrates.

It helps that the properties of silver nanowires lend themselves to the needs of wearable circuits — flexible and springy in their own right — but are not without complications. Silver nanowires tend to clog print nozzles during printing, so the research team enlarged the nozzle and suspended the nanowires in a water-soluble solvent, dramatically cutting the chance of clogging. Normally this would have a negative impact on precision, but the team employed electrostatic force to draw the ink to the desired location and maintain print resolution. Once printed, the solvent is rinsed away and the wearable circuit is ready for use.

By controlling print parameters — such as ink viscosity and concentration — the team are able to print on a wide variety of materials. Successful prototypes thus far include a glove with an integrated heating circuit and an electrocardiograph electrode, but otherwise the size of the printer is the only factor limiting the scale of the print. Until this technique becomes more widely available, interested parties might have to put their stock into more homebrew methods.

[Thanks for the tip, Qes!]

CIPODS: Earbuds For Cochlear Implants

If you wear cochlear implants, sound doesn’t enter through your ear, but rather from microphones above your ears. That means earbuds are useless and you have to resort to large and clumsy over the ear headphones. [Mjcraig23] wanted the convenience of earbuds and set out to do what we all do: hack it.

The result is handily portable as you can see in the video, below. The trick is that he used replacement battery covers and then grafted earbud holders (called EARBUDi) to them using one of our favorite fasteners, zip ties. Apparently, you can wire a cable directly into the device, but then you lose the ability to hear what’s going on around you, which would not be a good idea for catching some tunes while walking your dog or other common earbud use cases.

Continue reading “CIPODS: Earbuds For Cochlear Implants”