A Stylish Solution For Bike Navigation

[André Biagioni] is developing an open hardware bicycle navigation device called Aurora that’s so gorgeous it just might be enough to get you pedaling your way to work. This slick frame-mounted device relays information to the user through a circular array of SK6812 RGB LEDs, allowing you to find out what you need to know with just a quick glance down. No screen to squint at or buttons to press.

The hardware has already gone through several revisions, which is exactly what we’d expect to see for an entry into the 2019 Hackaday Prize. The proof of concept that [André] zip-tied to the front of his bike might have worked, but it wasn’t exactly the epitome of industrial design. It was enough to let him see that the idea had merit, and from there he’s been working on miniaturizing the design.

So how does it work? The nRF52832-powered Aurora connects to your phone over Bluetooth, and relays turn-by-turn navigation information to you via the circular LED array. This prevents you from having to fumble with your phone, which [André] hopes will improve safety. When you’re not heading anywhere specific, Aurora can also function as a futuristic magnetic compass.

With what appears to be at least three revisions of the Aurora hardware already completed by the time [André] put the project up on Hackaday.io, we’re very interested in seeing where it goes from here. The theme for this year’s Hackaday Prize is moving past the one-off prototype stage and designing something that’s suitable for production, and so far we’d say the Aurora project is definitely rising to the challenge.

Continue reading “A Stylish Solution For Bike Navigation”

Custom Electric Motorcycle Packs 6 KW

If you only need to travel at around 25 mph around town or to get a short distance to work, an electric bicycle might just be the best thing you can ride. It’s cheap, quick, and fun, and sometimes a great way to get some exercise too. If you want to dial up the amount of excitement, though, you’re going to want something with a little more power and speed. Something like an old dirt bike converted to a 6 kW electric motorcycle.

This is the latest build from [Boom Electric Cycles] and uses the frame from an early-90s Suzuki dirt bike as the foundation. From there it’s all new, though, as the engine was removed and replaced with 3 kW hub motors in each of the wheels. A 72-volt custom battery with 240 18650 cells pushed the amps through the motors, making this bike able to keep up anywhere except the fastest highways (if it’s street legal at all…).

Having about eight times more power than is found in a typical electric bicycle is sure to be a blast, but this build isn’t quite finished yet. Some of the trim panels need to be finished and the suspension needs to be adjusted, but it looks like it’ll be out and about any day now. Until then you’ll have to be satisfied with other projects that managed to cram in 3 kW per wheel.

Who Really Has The Largest Aircraft?

We were all glued to our screens for a moment a few weeks ago, watching the Scaled Composites Stratolaunch dual-fuselage space launch platform aircraft make its first flight. The six-engined aircraft represents an impressive technical feat by any standard, and with a wingspan of 385 ft (117 m) and payload weight of 550,000 lb (250 t), is touted as the largest ever flown.

Our own Brian Benchoff took a look at the possibility of hauling more mundane cargo as an alternative (and possibly more popular) use of its lifting capabilities. And in doing so mentioned that “by most measure that matter” this is the largest aircraft ever built. There are several contenders for the title of largest aircraft that depend upon different statistics, so which one really is the largest? Sometimes it’s not as clear as you’d think, but finding out leads us into a fascinating review of some unusual aeronautical engineering.

Continue reading “Who Really Has The Largest Aircraft?”

Wing Opens The Skies For Drones With UTM

Yesterday Alphabet (formerly known as Google) announced that their Wing project is launching delivery services per drone in Finland, specifically in a part of Helsinki. This comes more than a month after starting a similar pilot program in North Canberra, Australia. The drone design Wing has opted for consists not of the traditional quadcopter design, but a hybrid plane/helicopter design, with two big propellers for forward motion, along with a dozen small propellers on the top of the dual body design, presumably to give it maximum range while still allowing the craft to hover.

With a weight of 5 kg and a wingspan of about a meter, Wing’s drones are capable of lifting and carrying a payload of about 1.5 kg. This puts it into a category of drones far beyond of what hobbyists tend to fly on a regular basis, and worse, it involves Beyond Visual Line Of Sight (BVLOS for short) flying, which is frowned upon by the FAA and similar regulatory bodies. What Google/Alphabet figures that can enable them to make this kind of service a commercial reality is called Unmanned aircraft system Traffic Management (UTM).

UTM is essentially complementary to the existing air traffic control systems, allowing drones to integrate into these flows of manned airplanes without endangering either. Over the past years, it’s been part of NASA’s duty to develop the systems and infrastructure that would be required to make UTM a reality. Working together with the FAA and companies such as Amazon and Alphabet, the hope is that before long it’ll be as normal to send a drone into the skies for deliveries and more as it is today to have passenger and cargo planes with human pilots take to the skies.

Battle Tested Current Limiter For Cheap DC Motor Controllers

Running a brushed motor in muddy or dusty environments takes a toll on controllers, with both heavy back EMF and high stall currents. This explains one of the challenge in Europe’s Hacky Racer series, which is decidedly more off-road than America’s Power Racing Series.

In pushing these little electric vehicles to the limits, many builders use brushless Chinese scooter motors since they’re both available and inexpensive. Others take the brushed DC route if they’re lucky enough to score a motor — and then the challenge becomes getting the most performance without burning up your controller. To fix this, [MechanicalCat] has come up with a current limiter for cheap DC motor controllers.

Circuit protection added to motor controller

The full write-up is in the included PDF file, and describes the set-up of an Arduino Nano sitting between throttle and controller, and taking feedback from a current sensor. The controller in question is a 4QD Porter 10 so an extra component is a DC-to-DC converter to provide a floating ground for the Arduino. However, there is also the intriguing possibility of the same set-up being used with absurdly cheap Chinese motor controllers. There is also advice on fitting flyback diodes, something which might have saved one controller in the Hackaday pits last year.

It’s yet to be seen what effect this will have on Hacky Racer competitiveness, however its applications go far beyond that field into anywhere a reliable small DC motor drive on the cheap is required. Meanwhile, if you’re unsure where this Hacky Racer stuff came from, you could start here.

Python And Pi Provide Heads Up Display For Your Experimental Airplane

You shouldn’t be looking at screens when you’re driving, but what about a heads-up display? A screen that could put relevant information in your field of vision would be great, even more so if it used a Raspberry Pi. That’s exactly what [John] did, only he did it with an airplane.

First up, the legality of this build. [John]’s plane is registered as experimental, which, provided you know what you’re doing, is pretty close to ‘anything goes’ as you would want in a manned aircraft. [John] has a sufficient number of hours in his log book, and he’s built a Zenith 701.

For hardware, the hard part of this build is constructing a heads-up display. Fortunately, aftermarket HUDs exist, and [John] is using a Kivic projector, a $200 piece of equipment that’s readily available on Amazon. If you need a HUD for your car, there you go. The software is another thing entirely, with the goal of having the software decoupled from the display and data sources. This is somewhat easy to accomplish with a Raspberry Pi; the display is actually just some minimal text-based blocky graphics built in PyGame. This build is also decoupled from the data sources by building this as a user interface for Stratux, an independent Raspberry Pi-based ADS-B receiver for pilots.

There are several views available with this HUD, with the AHRS + ADS-B providing information on the aircraft’s attitude and altitude, along with a few indicators of the nearest planes. The traffic view expands on the ADS-B data, showing the nearest eight or so aircraft in the air, with a range, bearing, and difference in altitude. There’s a diagnostic window, and since [John]’s plane is a backcountry STOL thingamado that can hover in a strong wind, there’s also a digital version of a norden bombsight. It’s for dropping bags of flour onto a grass strip. You can check out [John]’s entire AirVenture presentation of the build below, with all the code available here.

Continue reading “Python And Pi Provide Heads Up Display For Your Experimental Airplane”

Remanufacturing A Rotary Airplane Engine

If someone tells you they have seen a rotary engine, the chances are that you will immediately think of a Wankel engine, as you might find in some of the more exotic Mazda sports cars. But there is another rotary engine that has a prior claim to the name, and it can be found as the power unit for many early-twentieth-century aircraft. In these rotary engines the cylinders are arranged radially around a stationary crankshaft, and it is the engine itself that rotates. They have the advantage of extreme simplicity, smooth power, and a low parts count, at the expense of total loss lubrication, a relatively large rotating mass, and some difficulty in controlling their power. These rotary engines were largely obsolete by the 1920s, but  recent upsurge of interest in WW1-era aircraft has led to the creation of a small demand for them. New Zealand based Classic Aero Machining Service have stepped in to fill that gap and are remanufacturing the Gnome radial engine, the most numerous design of that era.

For anyone with an interest in internal combustion engines, the Gnome is a fascinating study. It’s a nine-cylinder design that runs a four-stroke Otto cycle, but instead of the two or more valves you might be familiar with from your motor vehicle it has only a single valve. The so-called Monosoupape design uses its valve for both fuel and exhaust, opening it on the inlet stroke as well as the exhaust stroke. The simplicity of a single valve and no carburetor is thus offset by a difficulty in varying its power , so rotary engines would frequently reduce the number of firing cylinders in lieu of throttling back.

The CAMS Gnome is a faithful copy of the original, but with modern metallurgy and the addition of an electronic ignition system. The original castor oil is still used — it seems classic aviation buffs like the smell — but becuase it is notorious for leaving sticky deposits in the engine they are evaluating modern alternatives. They have some technical details on their website, and there’s a good chance you my hear one of their engines one day at an air show near you.

Continue reading “Remanufacturing A Rotary Airplane Engine”