Fully automated watering robot takes a big leap forward toward greenhouse automation

aquarius_robot

Greenhouse owners might find [David Dorhout]’s latest invention a groundbreaking green revolution! [David]’s Aquarius robot automates the laborious process of precision watering 90,000 square feet of potted plants. Imagine a recliner sized Roomba with a 30 gallon water tank autonomously roaming around your greenhouse performing 24×7 watering chores with absolute perfection. The Aquarius robot can do it all with three easy setups; add lines up and down the aisles on the floor for the robot to follow, set its dial to the size of your pots and maybe add a few soil moisture sensors if you want the perfect amount of water dispensed in each pot. The options include adding soil moisture sensors only between different sized plants letting Aquarius repeat the dispensing level required by the first plant’s moisture sensor for a given series.

After also digging through a pair of forum posts we learned that the bot is controlled by two Parallax propeller chips and has enough autonomous coding to open and close doors, find charging stations, fill its 30 gal water tank when low, and remember exactly where it left off between pit stops. We think dialing in the pot size could easily be eliminated using RFID pot identification tags similar in fashion to the Science Fair Sorting Project. Adjusting for plant and pot size as well as location might easily be automated using a vision system such as the featured Pixy a few weeks back. Finally, here are some featured hardware hacks for soil moisture sensing that could be incorporated into Aquarius to help remotely monitor and attend to just the plants that need attention: [Andy’s] Garden sensors, [Clover’s] Moisture control for a DIY greenhouse, [Ken_S’s] GardenMon(itoring project)

[David Dorhout] has 14 years experience in the agriculture and biotech industry. He has a unique talent applying his mad scientist technology to save the future of mankind as seen with his earlier Prospero robot farmer. You can learn more about Aquarius’s features on Dorhout R&D website or watch the video embedded below.

Continue reading “Fully automated watering robot takes a big leap forward toward greenhouse automation”

Open source PLC

In industrial applications, controlling relays, servos, solenoids, and the like isn’t just a matter of wiring in an Arduino and plugging in some code. No, for reliable operation you’ll need a PLC – a programmable logic controller – to automate all your hardware. PLCs are usually pretty expensive pieces of hardware, which led [Warwick] to come up with his own. He built two versions, one large and one small that can handle just about any task thrown at them.

Both devices are powered by an ATMEL SAM7S ARM chip running at 48 MHz. The smaller of the two devices has 10 digital inputs, 4 analog inputs, and 8 digital outputs able to sink 200 mA each. The larger PLC has 22 digital ins, 6 analog ins, and 16 digital outputs. Both of these devices have a ton of connectivity with USB, RS-232 and RS-485 ports

Below you can see the large PLC being used as a barcode scanner and as a strange device using compressed air to levitate a ping-pong ball. There’s also a demo of the smaller PLC lighting up some LEDs.

Continue reading “Open source PLC”

TP-Link router turned into a DALI automated lighting controller

dali-control-in-tplink-router

The members of Shackspace continue to put up impressive hacks based around the tiny TP-Link routers. This time around [Timm] has shoehorned a DALI controller inside the router case. This is a protocol we don’t remember hearing about before. The Digital Addressable Lighting Interface is a control network for commercial lighting. That way people responsible for taking care of large buildings can shut off all the lights at night (to name just one use). The new room at Shackspace has this style of controllers in its lights.

The two brown wires coming into the router make up the data bus for the DALI system. It connects to the add-on PCB which uses an Atmel AT90PWM316 microcontroller. The chip is specifically designed for DALI networks which made the rest of the project quite easy. It talks to the lights, the router talks to it, bob’s your uncle, and you’ve got network controlled lighting. Get this in a big enough building and you can play some Tetris.

In case you were wondering. Yes, this project has already been added to their TP-Link firmware generator.

Electronically augmented Foosball brings competition to the office

This office has a Foosball league that automatically tallies and posts the standings for each employee. This is thanks to all of the extra electronics that were added to the Foosball table in the break room.

The system is connected to the internet via WiFi. This allows it to store the final results of each game for use on the leader board. Player first identify themselves to the system using the RFID tag embedded in their employee badge (normally used to open doors in the building). From there the game play proceeds much like you’d expect, but the scoring is handled automatically. Each goal has a laser pointed across it which is broken when the ball passes through. But there are a pair of arcade buttons in case of a scoring error.

Standings are listed at the webpage linked above. There’s even functionality for new employees to registers through this page. Don’t miss a glimpse of the build in the clip after the break.

Continue reading “Electronically augmented Foosball brings competition to the office”

17-stage Great Ball Contraption must use all the LEGO pieces

Looking at this 17-stage Great Ball Contraption makes us think that [Skiyuky] should be working in industrial automation. The build, which has been assembled from an untold volume of LEGO parts, moves a reservoir of round plastic balls around a circuit. Each module exhibits a different mechanical way of handling the parts. It’s certainly not the first GBC we’ve seen, but the previous offering combined stages from many different makers. [Skiyuky] built this one all himself over the last two years.

The video after the break starts off at the main depository of tiny soccer and basketballs. To help illustrate how long it takes to move around the entire circuit [Skiyuky] adds a red and blue ball which are both easy to spot. From there it’s a Willy Wonky type of ride through all manner of contraptions. We’re struck by accuracy and efficiency with which all of the stages operate.

Continue reading “17-stage Great Ball Contraption must use all the LEGO pieces”

Controlling the power with bluetooth

[Mike] dropped us a tip to show off a system he has built to control some power sockets based on his proximity.  Initially the project started as a parallel port controlled box to switch the mains power.  Then he got the idea of turning this into a little more interactive of an automation tool. He is utilizing the bluetooth from his cell phone as a locator. When the box senses that he’s in the room, the power is on. When he leaves the area, the power is off.  You can see his ruby code on his web site if you wanted to give it a try or offer improvements.

Aquarium automation keeps the fish fed and the lights on

fish-tank-automator

Anyone who owns a fish tank knows that a good amount of care is required to keep fish happy, healthy, and most of all – alive. [Vicente Jiménez] usually has no problem keeping up on the day to day maintenance such as feeding and switching the tank light, but he wanted to automate these processes for times when he can’t be home to take care of the fish (Translation).

His aquarium automation project is meant to cover three separate parts of the operation: light control, feeding, and pump regulation during feeding times. [Vincente] picked up an STM8L Discovery board to control his system, which enabled him to easily control the automation of all three.

He constructed the feeding mechanism using an old cassette player motor, which turns his food drum (an old film canister), twice a day at specified feeding times. Before the drum is turned to dispense food, the STM8L turns off the aquarium’s pump via a relay to ensure it doesn’t get clogged in the process. During the day he keeps the tank illuminated, but once night falls, the microcontroller shuts the lights off so the fish can get their rest.

There’s no video of the system in action, but [Vincente] has detailed its construction pretty thoroughly in his blog, so be sure to check it out if you are in need of something similar.