Screenshot of the Insteon's new blog post, showing the Insteon logo in the header, the "A New Day for Insteon!" title, and some of the intro paragraph of the blog post

Insteon Gets Another Chance

It would appear that, sometimes, miracles happen. A few days ago, an update graced the website of Insteon, a company whose abrupt shuttering we covered in detail two months ago. An entity described as “small group of passionate Insteon users” has bought what was left of the company, and is working on getting the infrastructure back up. Previously, there was no sign of life from the company’s APIs. Now, Insteon hubs are coming back to life — or perhaps, they’re Inste-online again.

We’ve explained that revival of these devices without acquiring the company IP would’ve been tricky because of stuff like certificate pinning, and of course, a pile of proprietary code. Buying a company that’s undergoing a liquidation is not exactly end-user-friendly, but it would seem that someone sufficiently business-savvy got it done. The new CEO, as reported by [CNX Software], is a member of an investment committee — it’s fair to assert that this would help. A more sustainable funding source rather than ‘sell hardware and then somehow provide indefinite services’ is promised; they are moving to a subscription model, but only for Insteon Hub users. Recurring payments don’t sound as bad when it comes to paying developers and covering operational costs, and we hope that this revival succeeds.

Nothing is mentioned about moving towards openness in software and hardware — something that protects users from such failures in the first place. The new company is ultimately vulnerable to the same failure mode, and may leave the users in the dark just as abruptly as a result. However, we have our fingers crossed that the updated business model holds, purely for users’ sake. At least, unlike with the Wink hub, Insteon’s transition to a subscription model is better than the Inste-off alternative.

We thank [Itay] for sharing this with us! Via [CNX Software].

Two Nokia 1860 phones side by side - a Notkia-modded phone on the right, and an unmodified Nokia phone on the left

Notkia: Building An Open And Linux-Powered Numpad Phone

Many of us hackers have a longing for numpad-adorned mobile phones. We also have a shared understanding that, nowadays, such a phone has to be open and Linux-powered. Today’s project, Notkia, is the most promising and realistic effort at building a keypad phone that fits our requirements. Notkia is a replacement board for Nokia 168x series phones, equipped with an improved display, USB-C, WiFi, Bluetooth, and LoRa — and [Reimu NotMoe] of [SudoMaker] tells us this project’s extensive story.

The Notkia effort started over two years ago, because of [Reimu]’s increasing dislike for modern smartphones — something every hacker is familiar with. Her first-hand experience with privacy violations and hackability limitations on Android phones is recounted in detail, leading to a strong belief that there are fundamental problems with phones available nowadays. Building new hardware from the ground up seems to be the way forward. Two years later, this is exactly what we got!

Continue reading “Notkia: Building An Open And Linux-Powered Numpad Phone”

The speaker PCB inside of the speaker, with a flash chip ZIF holder soldered to the SPI flash pads on the PCB

Bluetooth Speaker Domesticated Through Firmware Mod

This might sound like a familiar problem – you get a Bluetooth speaker, and it sounds nice, but it also emits all kinds of weird sounds every now and then. [Oleg Kutkov] got himself a Sven PS460 speaker with FM radio functionality, but didn’t like that the “power on” sound was persistently loud with no respect for the volume setting, and the low battery notification sounds were bothersome. So, he disassembled the speaker, located a flash chip next to the processor, and started hacking.

Using a TL866 and minipro software, he dumped the firmware, and started probing it with binwalk. The default set of options didn’t show anything interesting, but he decided to look for sound file signatures specifically, and successfully found a collection of MP3 files! Proper extraction of these was a bit tricky, but he figured out how to get them out, and loaded the entire assortment into Audacity.

From there, he decided to merely make the annoying sounds quieter – negating the “no respect for the volume setting” aspect somewhat. After he exported the sound pack out of Audacity, the file became noticeably smaller, so he zero-padded it, and finally inserted it back into the firmware. Testing revealed that it worked just as intended! As a bonus, he replaced the “battery low” indicator sound with something that most of us would appreciate. Check out the demo video at the end of his write-up.

Domesticating your Bluetooth speakers tends to be called for. If you can’t do that for whatever reason, you can rebuild them into an audio receiver – or perhaps, build your own Bluetooth speakers, with aesthetics included and annoyance omitted from the start.

The circuit, assembled on a purple PCB, with a large capacitor and a sizeable white resistor, wires soldered to holes in the PCB

Protect Your Drivers When The Motor Stalls

[Mark Rehorst] tells us about a tragic incident involving an untimely demise of $200 worth of motor driving hardware, and shares a simple circuit so that we can prevent such tragedies in the future. His Arrakis sand table project has quite a few motors involved, and having forgotten to add limits into the software, he slammed a motor-driven mechanism into a well-fixed part of the table. The back EMF of the motor created a burst of energy, taking out the motor driver, the controller board, and the power supply.

With the postmortem done, he had to prevent this from happening again – preferably, in hardware. Based on a small appnote from Gecko Drives, he designed a simple PCB that shunts the motor with a high-power resistor, as soon as the current starts flowing into a direction it’s not supposed to flow into. He goes in depth about the way that the circuit works and the reasoning behind parts selection, as well as shows an LTSpice simulation and shares the PCB files. This was his first time designing PCBs in KiCad, and we believe he’s done a great job! This worklog is certainly worth reading if you’d like to understand how such circuits work and what goes into building one.

He dubs this a “bank account protection” circuit, and we can absolutely relate. It’s not just CNC tables that need such protections of course – we’ve seen a solution for small hacky makeshift electric vehicles, for instance. A motor’s generative properties aren’t always a problem, however – here’s just one example of a hacker trying to put them to good use.

Continue reading “Protect Your Drivers When The Motor Stalls”

A Sipeed Tang Nano 9k board on a Thinkpad keyboard, with an LCD panel attached to it

An Open Toolchain For Sipeed Tang Nano FPGAs

[Sevan Janiyan] shares their research on putting an open FPGA toolchain together. Specifically, this is an open toolchain for the Sipeed Nano Tang FPGAs, which are relatively cheap offerings by Sipeed from China. The official toolchain is proprietary and requires you to apply for a license that’s to be renewed every year. There’s a limited educational version you can use more freely, but of course, that’s not necessarily sufficient for comfortable work.

This toolchain relies on the apicula project, an effort to reverse-engineer, reimplement and document the Gowin FPGA bitstream format, as well as the gowin integration for nextpnr (an open tool for FPGA place-and-route). With a combination of yosys, apicula, nextpnr and openFPGAloader, [Sevan] put together a set of commands you can use to build gateware for your Nano Tang FPGAs – without any proprietary limitations blocking your way. They show a basic blinkie demo, and also a demo that successfully operates a parallel LCD connected to the board.

The availability of open toolchains for FPGAs has always been somewhat of a sore point. Wondering about open FPGA toolchains? This Supercon 2019 talk by Tim [Mithro] Ansell will get you up to speed!

We thank [feinfinger (sneezing)] for sharing this with us!

iPhone 6 with Linux boot log on its screen

Boot Mainline Linux On Apple A7, A8 And A8X Devices

[Konrad Dybcio] tells about his journey booting Linux on A7/8/8X processors, playing around with an old iPhone 5 he’s got in a drawer. It’s been a two-year “revisit every now and then” journey, motivationally fueled by the things like Linux on M1 Macs announcement. In the end, what we have here is a way to boot mainline Linux on a few less-than-modern but still very usable iPhones, and a fun story about getting there.

[Konrad]’s work is based on the Sandcastle project research, but he couldn’t quite figure out how to make their code work, and had to make sense of it as he went. At some point, he got stuck on enabling the MMU, which was the main roadblock for a while. Joined by another developer intrigued by Apple hardware, they were hacking away at it, developing tools and neat tricks on their way, but to no avail. With the framebuffer accessible and no other decent debugging methods in sight, he tells about a code snippet they wrote that printed register values as valid barcodes Continue reading “Boot Mainline Linux On Apple A7, A8 And A8X Devices”

Screenshot of the EFI shell, showing doom.wad and doom.efi in 'ls' command output, and then doom.efi being loaded

DOOM? In Your BIOS? More Likely Than You Think!

We’ve seen hackers run DOOM on a variety of appliances, from desk phones to pregnancy tests. Now, the final frontier has been conquered – we got DOOM to run on an x86 machine. Of course, making sure we utilize your PC hardware to its fullest, we have to forego an OS. Here are two ways you can run the classic shooter without the burden of gigabytes of bloated code in the background.

[nic3-14159] implemented this first version as a payload for coreboot, which is an open-source BIOS/UEFI replacement for x86 machines. Some might say it’s imperfect — it has no sound support, only works with PS/2 keyboards, and exiting the game makes your computer freeze. However, it’s playable, and it fits into your BIOS flash chip.

But what if your computer hasn’t yet been blessed with a free BIOS replacement? You might like this UEFI module DOOM port instead, originally made by [Warfish] and then built upon by [Cacodemon345]. To play this, you only need to compile the binary and an UEFI shell, then use the “Load EFI Shell” option in your UEFI menu – something that’s widely encountered nowadays. This version also lacks sound, but is a bit more fully featured due to all the facilities that UEFI provides for its payloads.

Of course there’s far more efficient ways to slay demons on your computer, but even if they aren’t necessarily practical from a gaming standpoint, these two projects serve as decent examples of Coreboot and UEFI payloads. BIOS replacements like coreboot take up so little space, we’ve even seen Windows 3.1 fit alongside coreboot in the BIOS chip. Wondering what UEFI is, even? Here’s a primer for you. And, if you don’t mind the exceptional bloat of a stripped-down Linux install, here’s a Linux image built from the ground up to run DOOM specifically.

Continue reading DOOM? In Your BIOS? More Likely Than You Think!”