Blacksmith Elevates The Craft With This Fabulous Strongbox

For most of human industrial history, the blacksmith was the indispensable artisan. He could fashion almost anything needed, from a simple hand tool to a mechanism as complex as a rifle. Starting with the most basic materials, a hot forge, and a few tools that he invariably made himself, the blacksmith was a marvel of fabrication.

If you have any doubt how refined the blacksmith’s craft can be, feast your eyes on [Seth Gould]’s masterpiece of metalwork. Simply called “Coffer”, [Seth] spent two years crafting the strongbox from iron, steel, and brass. The beautifully filmed video below shows snippets of the making, but we could easily watch a feature-length film detailing every aspect of the build. The box is modeled after the strongboxes built for the rich between the 17th and 19th centuries, which tended to favor complex locking mechanisms that provided a measure of security by obfuscation. At the end of the video below, [Seth] goes through the steps needed to unlock the chest, each of which is filled with satisfying clicks and clunks as the mechanism progresses toward unlocking. The final reveal is stunning, and shows how much can be accomplished with a forge, some files, and a whole lot of talent.

If you’ve never explored the blacksmith’s art before, now’s the time. You can even get started easily at home; [Bil Herd] will show you how.

Continue reading “Blacksmith Elevates The Craft With This Fabulous Strongbox”

A Very Different ‘Hot Or Not’ Application For Your Phone

Radioactivity stirs up a lot of anxiety, partially because ionizing radiation is undetectable by any of the senses we were born with. Anytime radiation makes the news, there is a surge of people worried about their exposure levels and a lack of quick and accurate answers. Doctors are flooded with calls, detection devices become scarce, and fraudsters swoop in to make a quick buck. Recognizing the need for a better way, researchers are devising methods to measure cumulative exposure experienced by commodity surface mount resistors.

Cumulative exposure is typically tracked by wearing a dosimeter a.k.a. “radiation badge”. It is standard operating procedure for people working with nuclear material to wear them. But in the aftermath of what researchers euphemistically call “a nuclear event” there will be an urgent need to determine exposure for a large number of people who were not wearing dosimeters. Fortunately, many people today do wear personal electronics full of components made with high purity ingredients to tightly controlled tolerances. The resistor is the simplest and most common part, and we can hack a dosimeter with them.

Lab experiments established that SMD resistors will reveal their history of radiation exposure under high heat. Not to the accuracy of established dosimetry techniques, but more than good enough to differentiate people who need immediate medical attention from those who need to be monitored and, hopefully, reassure people in neither of those categories. Today’s technique is a destructive test as it requires removing resistors from the device and heating them well above their maximum temperature, but research is still ongoing in this field of knowledge we hope we’ll never need.

If you prefer to read about SMD resistor hacks with less doomsday, we recently covered their use as a 3D printer’s Z-axis touch sensor. Those who want to stay on the topic can review detection hacks like using a single diode as a Geiger counter and the IoT dosimeter submitted for the 2017 Hackaday Prize. Or we can choose to focus on the bright side of radioactivity with the good things made possible by controlled artificial radioactivity, pioneered by Irène Joliot-Curie.

[via Science News]

Open Source Biological Gear For The Masses

At the risk of putting too fine a point on it, Hackaday exists because people are out there building and documenting open source gadgets. If the person who built a particular gizmo is willing to show the world how they did it, consider us interested. Since you’re reading this, we’ll assume you are as well. Over the years, this mentality has been spreading out from the relatively niche hacker community into the greater engineering world, and we couldn’t be happier.

Case in point, the Poseidon project created at the California Institute of Technology. Developed by students [Sina Booeshaghi], [Eduardo Beltrame], and [Dylan Bannon], along with researcher [Jase Gehring] and professor [Lior Pachter], Poseidon consists of an open source digital microscope and syringe pump which can be used for microfluidics experiments. The system is not only much cheaper than commercial offerings, but is free from the draconian modification and usage restrictions that such hardware often comes with.

Of course, one could argue that major labs have sufficient funding to purchase this kind of gear without having to take the DIY route. That’s true enough, but what benefit is there to limiting such equipment to only the established institutions? As in any other field, making the tools available to a wider array of individuals (from professionals to hobbyists alike) can only serve to accelerate progress and move the state of the art forward.

The Poseidon microscope consists of a Raspberry Pi, touch screen module, and commercially available digital microscope housed in a 3D printed stage. This device offers a large and clear view of the object under the microscope, and by itself makes an excellent educational tool. But when running the provided Python software, it doubles as a controller for the syringe pumps which make up the other half of the Poseidon system.

Almost entirely 3D printed, the pumps use commonly available components such as NEMA 17 stepper motors, linear bearings, and threaded rods to move the plunger on a syringe held in the integrated clamp. Controlled by an Arduino and CNC shield, these pumps are able to deliver extremely precise amounts of liquid which is critical for operations such as Single-cell RNA sequencing. All told a three pump system can be built for less than $400 USD, compared to the tens of thousands one might pay for commercially available alternatives.

The Poseidon project joins a relatively small, but very exciting, list of DIY biology projects that we’ve seen over the years. From the impressive open source CO2 incubator we saw a few years ago to the quick and dirty device for performing polymerase chain reaction experiments, there’s little doubt about it: biohacking is slowly becoming a reality.

Continue reading “Open Source Biological Gear For The Masses”

High-Style Ball Balancing Platform

If IKEA made ball-balancing PID robots, they’d probably look like this one.

This [Johan Link] build isn’t just about style. A look under the hood reveals not the standard, off-the-shelf microcontroller development board you might expect. Instead, [Johan] designed and built his own board with an ATmega32 to run the three servos that control the platform. The entire apparatus is made from a dozen or so 3D-printed parts that interlock to form the base, the platform, and the housing for the USB webcam that’s perched on an aluminum tube. From that vantage point, the camera’s images are analyzed with OpenCV and the center of the ball is located. A PID loop controls the three servos to center the ball on the platform, or razzle-dazzle it a little by moving the ball in a controlled circle. It’s quite a build, and the video below shows it in action.

We’ve seen a few balancing platforms before, but few with such style. This Stewart platform comes close, and this juggling platform gets extra points for closing the control loop with audio feedback. And for juggling, of course.

Continue reading “High-Style Ball Balancing Platform”

Microwave Parts Become Quick And Nasty Jacob’s Ladder

The Jacob’s Ladder is an electrical device named after a biblical “ladder to Heaven”, consisting of a pair of vertically oriented conductors that spread apart vertically. These conductors are charged with high voltage, which creates the repeatedly climbing arc we’ve all come to know and love from science fiction movies of yesteryear.

[LOOK MUM NO COMPUTER] was on a scavenger hunt for electronic junk, and came across a microwave in a skip that was begging to be hacked. After kicking around a few ideas, it was decided that the microwave would donate its high voltage transformer to create a Jacob’s ladder. The transformer is first bolted down to a piece of wood, and creates some sparks on the bench when shorted. The output is then wired to a pair of copper pipes to create the classic effect.

Unfortunately, the device isn’t self starting, requiring the electrodes to be temporarily short circuited to generate the initial arc. We suspect that increasing the voltage may help things somewhat, either with another transformer in series or with a voltage multiplier.

It goes without saying that high voltage projects do bring certain risks to life and limb that should not be overlooked. If you’ve still got a thirst for danger, check out this home built X-ray machine. Video after the break.

Continue reading “Microwave Parts Become Quick And Nasty Jacob’s Ladder”

Simple Automata Extravaganza

[Federico Tobon] from [Wolfcat Workshop] spent Makevember in 2017 building a series of fascinating automata using the most basic of craft supplies and simple tools in his workshop. Using a combination of rigid materials such as wooden cubes, popsicle sticks, and paper clips and pliable ones like paper and rubber bands, his creations are way more delightful to play with compared to fidget spinners.

There are no assembly guides, instructions or building plans, but for a hacker, one look at these designs ought to be enough to glean how to build one, with some trial and error to get it right. And that is exactly what [Tobon] found to his delight. After sharing animated GIFs of his creations on social media, numerous other hackers built and shared their own versions of his designs as well as building some new ones.

He posts several other useful resources, some of which were the inspiration that got him started making these automata. All of them are pretty interesting, so do take a look at them too. There is a lot that young kids can learn from building these little machines, given some guidance and help from the elders. But the way we see it, it’s likely the old folks will enjoy them more.

The video after the break compiles all of the little machines for six minutes of viewing pleasure.

Continue reading “Simple Automata Extravaganza”

Hack Your File Hierarchy With Johnny Decimal System (Dewey’s Older Brother)

Most of us have our fair share of digital debris. After all, with drives measured in one-million-million byte increments it’s tempting to never delete anything. The downside is you may never be able to find anything either. [Johnny Noble] must have gotten pretty fed up with clutter when he decided to formalize and publish his own numeric system for organizing everything he comes in contact with. It’s called Johnny Decimal and it’s actually pretty simple!

This is of course a play on words for the Dewey Decimal system. Dewey is one of a variety of information organization systems used by libraries to sort the books on their shelves. It’s based on moving books into sets of fixed, predefined categories which are uniform across all users of the Dewey. To locate a volume the user composes categories of increasing specificity to build a number which specifies the approximate space a particular book should live in. Each individual volume has a slightly more verbose assigned number which includes the author’s name to reduce confusion in cases where there are multiple works. Wikipedia has an instructive example which you can see here.

Johnny Decimal

Johnny Decimal works similarly but [Johnny] has a specific method he’s devised for the user to create their own categories with somewhat less specificity than Dewey. This makes it less onerous for the user to adapt to their needs, and if it’s easier to use it’s more likely to be used. I won’t spoil the process here, go read his site for instructions.

Ok so why bother? [Johnny] hints at it, but part of the point is to force the user to think about organization in the first place. With no system and an endless torrent of incoming files it’s easy to end up with the giant “~/Downloads” of doom and never improve from there. But with a clearly defined system (which is easy to execute!) the bar to improve things gets much lower. Certainly the thought of a well-organized file system gives us the shivers!

If you’re interested in implementing it in your own systems, the Johnny Decimal site has many pages devoted to explaining how to put together areas and categories, how to handle running out of buckets, the process for developing your own system, and more. If you try it and have luck, send us a note! We’d love to hear about anything you discover. If you’ll excuse us, we’re off to go fix up our parts bins with a marker and some sticky notes.

Continue reading “Hack Your File Hierarchy With Johnny Decimal System (Dewey’s Older Brother)”