Variable Thickness Slicing For 3D Printers

With proper tuning, any 3D printer can create exceptionally detailed physical replicas of digital files. The time it takes for a printer to print an object at very high detail is another matter entirely. The lower the layer height, the more layers must be printed, and the longer a print takes to print.

Thanks to [Steve Kranz] at Autodesk’s Integrated Additive Manufacturing Team, there’s now a solution to the problem of very long, very high-quality prints. It’s called VariSlice, and it slices 3D in a way that’s only high quality where it needs to be.

The basic idea behind VariSlice is to print vertical walls at a maximum layer height, while very shallow angles – the top of a sphere, for example – are printed at a very low layer height. That’s simple and obvious; you will never need to print a vertical wall at ten micron resolution, and fine details will always look terrible with a high layer height.

The trick, as in everything with 3D printing, is the implementation. In the Instructable for VariSlice, it appears that the algorithm considers the entire layer of an object at a time, taking the maximum slope over the entire perimeter and refining the layer height if it’s necessary. There’s no weird stair stepping, overlapping layers of different thicknesses, or interleaving here. It’s doing automatically what you’d normally have to do manually.

Nevertheless, the VariSlice algorithm is now one of Autodesk’s open source efforts, just like the Ember resin printer used in the example below. The application for this algorithm in filament-based printers is obvious, though. The speed increase for the same level of quality is variable, but the time it takes to print some very specific objects can be up to ten times faster. Whether or not this algorithm can be integrated into Cura or Slic3r is another matter entirely, but we can only hope so.

Continue reading “Variable Thickness Slicing For 3D Printers”

The Hacks And Puzzles Of The Hackaday SuperCon Badge

The greatest hardware conference is right around the corner. We would be remiss if the Hackaday SuperConference badge wasn’t the greatest electronic badge in history, and we think we have something special here. We’ve already taken a look at the hardware behind this year’s badge, and now it’s time to take a look at the challenges for this year’s Hackaday SuperCon.

The Puzzles

A conference badge isn’t good unless there are a few puzzles to solve, and the 2016 Hackaday SuperCon badge doesn’t come up short. Hidden behind an accelerometer-based gravity simulation, a moving message display, a Tetris clone, and an infrared communications protocol are a series of five challenges. The first SuperCon attendee to beat the challenge will be awarded a fantastic cash prize of $256 and win the respect of their peers.
Continue reading “The Hacks And Puzzles Of The Hackaday SuperCon Badge”

Specifications You Should Read: The NASA Workmanship Standards

"This is reflective of the typically idiosyncratic way engineer's of this era explored the human condition. The purple and shitty gradient show's the artists deep struggle with deadlines and his personal philosophy on the tyranny of the bourgeois. " - A segment from a confused student's art history paper
“Reflective of the typically idiosyncratic way engineers of this era explored the human condition. The shitty gradient show’s the deep struggle with deadlines and their personal philosophy on the tyranny of the bourgeois. ” – An excerpt from a confused student’s art history paper after the standard is installed in the Louvre.

The NASA workmanship standards are absolutely beautiful. I mean that in the fullest extent of the word. If I had any say in the art that goes up in the Louvre, I’d put them up right beside Mona. They’re a model of what a standard should be. A clear instruction for construction, design, and inspection all at once. They’re written in clear language and contain all the vernacular one needs to interpret them. They’re unassuming. The illustrations are perfectly communicative.  It’s a monument to the engineer’s art.

Around five years ago I had a problem to solve. Every time a device went into the field happily transmitting magic through its myriad connectors, it would inevitably come back red tagged, dusty, and sad. It needed to stop. I dutifully traced the problem to a connector, and I found the problem. A previous engineer had informed everyone that it was perfectly okay to solder a connector after crimping. This instruction was added because, previously, the crimps were performed with a regular pair of needle nose pliers and they came undone… a lot. Needless to say, the solder also interfered with their reliable operation, though less obviously. Stress failures and intermittent contact was common.

Continue reading “Specifications You Should Read: The NASA Workmanship Standards”

Drum On A Chip–Not That Kind Of Chip

Comedian Mitch Hedberg had a theory about Pringles potato chips. His theory is the company formed to make tennis balls. But instead of a truckload of rubber, someone accidentally sent them potatoes, so they made the best of it. Certainly the Pringles can is an iconic brand all by itself. The cans also have a lot of hacker history, since they are commonly used for WiFi cantennas (even though it might not be the best choice of cans). People also use them to build pinhole cameras, macro lenses, and a variety of cannon-like devices.

[Ian H] uses the short Pringles cans to build a drum kit. Clearly, the little cans aren’t going to make very much sound on their own, but with a piezo speaker element used in reverse, the cans become touch sensors that feed an Arduino and drive a MIDI device. You can see a video of the result, below.

Continue reading “Drum On A Chip–Not That Kind Of Chip”

The Final 10 Entries Of The 2016 Hackaday Prize

It has been quite a ride this year, watching entries pour in during the five challenges of the 2016 Hackaday Prize. Our yearly engineering initiative is designed to focus the skill, experience, and creativity of the world’s tinkerers, hackers, designers, and fabricators to build something that matters: things that change lives. The final ten entries, from more than 1,000, exemplify this mission.

For a brief overview of these entries, check out the videos below where we spend about ninty seconds recapping each one, along with some thoughts from the Hackaday Prize judges. These recap videos will be shown during the Hackaday Prize awards ceremony, held this Saturday during the SuperConference. I would love to invite you to attend but we’re completely sold out. You should, however, jump into the conference chat channel to talk about what’s going on, follow along with the badge crypto challenge, and hear where each entry finishes in real time as the top prizes are awarded.

2016 Hackaday Prize Finalists:

Congratulations to all ten of these finalists, who outdid themselves. Each of the 100 projects that moved past the preliminary rounds has already won $1,000, but these finalists will also be taking home one of five $5,000 prizes, two $10,000 prizes, $25,000 for the runner-up, or $150,000 plus a residency at the Supplyframe Design Lab for the winner of the Hackaday Prize. Which project is that going to be? Find out this Saturday.

Continue reading “The Final 10 Entries Of The 2016 Hackaday Prize”

The Comic Book World Of Capacitor Marketing

The Economist is an interesting publication, a British weekly newspaper that looks for all the world like a magazine, and contains pithy insights into world politics and economic movements. It’s one of those rare print news publications that manages to deliver fresh insights even to hardened web news junkies despite its weekly publication date.

It was typical then of their wide-ranging coverage of world industries to publish a piece recently on the world of supercapacitors, with particular focus on Estonia’s Skeleton Technologies. This is an exciting field in which the products are inching their way towards energy density parity with conventional batteries, and news of new manufacturing facilities coming online should be of interest to many Hackaday readers.

Exciting though it may be it was not the news of a new capacitor plant in Germany that provided the impetus for this piece. Instead it was the language used by the Economist writer delicately skirting the distinction between the words “Supercapacitor” and “Ultracapacitor”. Images of flying crimefighters in brightly coloured capes spring instantly to mind, as Captain Ultra and Superman battle an arch-villain who is no doubt idly bouncing a piece of burning Kryptonite against the wall in readiness for the final denouement.

Continue reading “The Comic Book World Of Capacitor Marketing”

Emulating A GameBoy Advance Inside Of A Gameboy Advance

[Ryzee119]’s GBA might not look so different at first glance. The screen is way better than you remember, but that may just be your memory playing tricks on you. The sound comes out of the speakers. It feels the right weight. It runs off AA batteries. Heck, even the buttons feel right.

emulating-gba-inside-gbaIt’s not until you notice that it really shouldn’t be playing any games without a cartridge inserted that you know something is not right in the Mushroom Kingdom. When you look inside you see the edge of a Raspberry Pi Zero instead of the card edge connector you expected.

It took a lot of work for [Ryzee119] to convert a dead, water damaged, GBA to a thriving emulation station based around a Pi Zero. The first step was desolder the components he couldn’t find anywhere else. The LR buttons, the potentiometer, and even the headphone jack. The famously hard to see screen, of course, had to go.  It was replaced by a nice TFT. Also, the original speaker was too corroded from the water and he sourced a replacement.

Custom replacement PCB
Custom replacement PCB

Next he took a good photo of the GBA’s circuit board. We wonder if he used the scanner method mentioned in the comments of this article? He spent a lot of time in Dassault’s DraftSight, a 2D CAD program, outlining the board. Then, after thoroughly verifying the size of the board for the Nth time he imported the outlines to EagleCAD.

He managed to cram quite a bit onto the board while remaining inside the GBA’s original envelope. The switches, potentiometer, and jack went back to their original locations. Impressively, he made his own pad traces for the A, B, and D-Pad buttons. The mod even handles slowly decreasing battery voltages better than the original.

In the end it all snaps together nicely. He’s configured it to boot into the emulator right at start-up. If you’d like one for yourself, all his files are open source.