Glitchy Synthesizer Meets Honeycomb LED Matrix

Don’t watch [Jason Hotchkiss]’s video if flashing lights or bleepy-bloopy synthesizer noises give you seizures. Do watch, however, if you’re interested in a big honeycomb-shaped LED matrix being driven at audio frequencies through a dedicated square-wave synthesizer that’s built in.

The LED panel in question is housed in a snazzy laser-cut, honeycomb-shaped bezel: a nice change from the standard square in our opinion. The lights are 1/2 watt (whoa!) whites, and the rows and columns are driven by transistor drivers that are in turn controlled by shift registers. We’re not entirely sure how the matrix is driven — we’d love to see a circuit diagram — but it looks like it’s some kind of strange, non-scanning mode where all of the column and row drives are on at once. Whatever, it’s art.

And it’s driven by logic chips making audio-frequency square waves. Two of these are fed into an LFSR and into an R-2R DAC and then into the shift registers. The output is chaos, but the audio and the visuals do seem to influence each other. It’s an audio-visual embodiment of some of my wildest Logic Noise fantasies. Pretty cool. Enjoy the video.

Continue reading “Glitchy Synthesizer Meets Honeycomb LED Matrix”

A Mess Of Wires Turned Into An Analog Synth

Over on YouTube, [GumpherDM3] built one of the greatest musical projects we’ve seen in a long time. It’s an analog synthesizer that is one of a kind. It’s going to stay one of a kind, too: no one would ever want to copy this mess of wires and perfboard that was successfully turned into a complete musical instrument.

The design of this synth is what you would expect from something that draws its inspiration from semimodular synths such as the Minimoog and Korg MS20. There are four VCOs on this synth, two audio and two used for the LFOs. A four-pole low pass filter, VCA, and two envelope generators round out the purely analog portion of the build. There’s an arpeggiator in there too, which makes for a really great demo video (below).

Inside, this is a true analog synth with the VCOs, filter, and VCA built around the LM13700 transconductance amplifier. The build log shows these chips spread out around half a dozen breadboards before being plugged into sockets soldered to handwired perf board. This synth is a one of a kind instrument – no one would want to build this thing twice.

Additional features include an Arduino with a MIDI in port sending out CV signals to the analog part of the synth. This thing has everything you would expect from a modern take on an analog synthesizer, and it sounds good, too.

Continue reading “A Mess Of Wires Turned Into An Analog Synth”

Sega Genesis Chiptunes Player Uses Original Chips

If you were a child of the late 1980s or early 1990s, the chances are you’ll be in either the Super Nintendo or the Sega Genesis/Mega Drive camp. Other 16-bit games consoles existed, but these were the ones that mattered! The extra power of the Nintendo’s souped-up 16-bit 6502 derivative or the Sega’s 68000 delivered a gaming experience that, while it might not have been quite what you’d have found in arcades of the day, was at least close enough that you could pretend it was.

The distinctive sound of consoles from that era has gained a significant following in the chiptunes community, with an active scene composing fresh pieces, and creating projects working with them. One such project is [jarek319]’s Sega Genesis native hardware chiptune synthesiser, in which music stored as VGM files on a MicroSD card are parsed by an ATSAMD21G18 processor and sent to a YM2612 and an SN76489 as you’d have found in the original console. The audio output matches the original circuit to replicate the classic sound as closely as possible, and there is even some talk about adding MIDI functionality for this hardware.

The software is provided, though he admits there is still a little way to go on some functions. The MIDI support is not yet present, though he’s prepared to work on it if there was enough interest. You really should hare this in action, there is a video which we’ve placed below the break. Continue reading “Sega Genesis Chiptunes Player Uses Original Chips”

God Of Papercraft Builds Working Organ Used For Own Adulation

There’s a wide world to explore when it comes to papercraft, but we reserve special praise for fully functional builds. [Aliaksei Zholner’s] working papercraft organ is a stunning example of what can be achieved with skill and perseverance.

The video is short but covers some finer touches – the folded concertinas of paper acting as springs to return the keys, for example. Air is supplied by a balloon, and the organ has a tone similar to other toy organs of comparable size.

The builder has declined to share templates at this stage, due to the complexity of the model and the fact that apparently even the thickness of the paper used can affect the function. This is not surprising — to get any sort of pipe organ to play in tune requires finesse and careful fine tuning. The build thread sheds some further light on the build (in Russian) if you’re curious to know more.

Perhaps the one thing we find surprising is that we haven’t seen something similar that’s 3D printed. If you’ve done it, smash it through on the tip line! Else, if you’re thirsty for more functional papercraft, you can’t go past the fantastic papercraft strandbeest build we covered back in 2011.

It’s A Synthesizer. It’s A Violin. It’s A Modulin

It sounds a little like a Theremin and looks a lot like the contents of your scrap bin. But it’s a unique musical instrument called a modulin, and after a few teasers we finally have some details on how it was built.

Making music with marbles is how we first heard of [Martin] of the Swedish music group Wintergatan. He seems as passionate about making his own instruments as he is about the music itself, and we like that. The last time we saw one of his builds was this concert-ready music box, which he accompanied with an instrument he called a modulin. That video gave only a tantalizing look at this hacked together instrument, but the video below details it.

“Modulin” comes from the modular synthesizer units that create the waveforms and pressure-sensitive ribbon controller on the violin-like neck. The instrument has 10 Doepfer synthesizer modules mounted to a hacked-together frame of wood and connected by a forest of patch cables. [Martin]’s tour of the instrument is a good primer on how synthesizers synthesize – VCOs, VCAs, envelope generators, filters – it’s all there. We’re treated to a sample of the sounds a synthesizer can make, plus majestic and appropriately sci-fi sounding versions of Also sprach Zarathustra and the theme from Jurassic Park. And be sure to check out the other video for another possibly familiar tune.

This might be old hat to musicians, but for those of us to whom music is a mystery, such builds hold extra sway. Not only is [Martin] making music, he’s making the means to make music. We’re looking forward to hearing what’s next.

Continue reading “It’s A Synthesizer. It’s A Violin. It’s A Modulin”

A Six-Voice Synth Built On The Raspberry Pi

Over the last few decades, audio synthesizers have been less and less real hardware and more and more emulations in software. Now that we have tiny powerful computers that merely sip down the watts, what’s the obvious conclusion? A six-voice polyphonic synthesizer built around the Raspberry Pi.

The exquisitely named ‘S³-6R’ synthesizer is a six-voice phase modulation synthesizer that outputs very high resolution (24-bit and 96 kHz) audio. It’s the product of R-MONO Lab, who have displayed interesting musical devices such as a recorder-based pipe organ in the past. This build is a bit more complex, offering up some amazing sounds, all generated on a Raspberry Pi 3.

While talk of oscillators and filters is great, what’s really interesting here is the keyboard itself. The S³-6R is using the Roland K-25m, a tiny MIDI keyboard meant to serve as a ‘dock’ of sorts for Roland’s recent re-releases of the classic Jupiter and Juno synths. Building a MIDI keyboard is not easy by any stretch of the imagination, and using this little keyboard dock is a cheap way to pipe MIDI notes into any project without a lot of fuss.

Below, you can check out the audio demos of the S³-6R. It’s a real synth and sounds great. We can only hope the software will be uploaded somewhere eventually.

Continue reading “A Six-Voice Synth Built On The Raspberry Pi”

Sync Your Pocket Synth With Ableton

The Teenage Engineering Pocket Operators are highly popular devices — pocket-sized synthesizers packed full of exciting sounds and rhythmic options. They’re also remarkably affordable. However, this comes at a cost — they don’t feature MIDI connectivity, so it can be difficult to integrate them into a bigger digital music setup. Never fear, little-scale’s got your back. This Max patch allows you to synchronize an Ableton Link network to your Pocket Operators.

little-scale’s trademark is creating useful software and hardware devices using cheap, off-the-shelf hardware wherever possible. The trick here is a simple Max patch combined with a $2 USB soundcard or Bluetooth audio adapter. It’s all very simple: the Pocket Operators have a variety of sync modes that sync on audio pulses, essentially a click track. They use stereo 3.5mm jacks on board, generally using one channel for the synth’s audio and one channel for receiving sync pulses. It’s a simple job to synthesize suitable sync pulses in Ableton, and then pump them out to the Pocket Operators through the Bluetooth or USB audio output.

The Pocket Operators sync at a rate of 2 PPQN — that’s pulses per quarter note. little-scale says that KORG volcas & monotrons should also work with this patch, as they run at the same rate, but it’s currently untested. If you happen to try this for yourself, let us know if it works for you. Video below the break.

We’ve seen pocket synths on Hackaday before, with this attractive mixer designed for use with KORG Volcas.

Continue reading “Sync Your Pocket Synth With Ableton”