Hacking When It Counts: DIY Prosthetics And The Prison Camp Lathe

There are a lot of benefits to writing for Hackaday, but hands down one of the best is getting paid to fall down fascinating rabbit holes. These often — but not always — delightful journeys generally start with chance comments by readers, conversations with fellow writers, or just the random largesse of The Algorithm. Once steered in the right direction, a few mouse clicks are all it takes for the properly prepared mind to lose a few hours chasing down an interesting tale.

I’d like to say that’s exactly how this article came to be, but to be honest, I have no idea where I first heard about the prison camp lathe. I only know that I had a link to a PDF of an article written in 1949, and that was enough to get me going. It was probably a thread I shouldn’t have tugged on, but I’m glad I did because it unraveled into a story not only of mechanical engineering chops winning the day under difficult circumstances, but also of how ingenuity and determination can come together to make the unbearable a little less trying, and how social engineering is an important a skill if you want to survive the unsurvivable.

Continue reading “Hacking When It Counts: DIY Prosthetics And The Prison Camp Lathe”

Will Embodied AI Make Prosthetics More Humane?

Building a robotic arm and hand that matches human dexterity is tougher than it looks. We can create aesthetically pleasing ones, very functional ones, but the perfect mix of both? Still a work in progress. Just ask [Sarah de Lagarde], who in 2022 literally lost an arm and a leg in a life-changing accident. In this BBC interview, she shares her experiences openly – highlighting both the promise and the limits of today’s prosthetics.

The problem is that our hands aren’t just grabby bits. They’re intricate systems of nerves, tendons, and ridiculously precise motor control. Even the best AI-powered prosthetics rely on crude muscle signals, while dexterous robots struggle with the simplest things — like tying shoelaces or flipping a pancake without launching it into orbit.

That doesn’t mean progress isn’t happening. Researchers are training robotic fingers with real-world data, moving from ‘oops’ to actual precision. Embodied AI, i.e. machines that learn by physically interacting with their environment, is bridging the gap. Soft robotics with AI-driven feedback loops mimic how our fingers instinctively adjust grip pressure. If haptics are your point of interest, we have posted about it before.

The future isn’t just robots copying our movements, it’s about them understanding touch. Instead of machine learning, we might want to shift focus to human learning. If AI cracks that, we’re one step closer.

 

Hackaday Prize 2023: Finger Tracking Via Muscle Sensors

Whether you want to build a computer interface device, or control a prosthetic hand, having some idea of a user’s finger movements can be useful. The OpenMuscle finger tracking sensor can offer the data you need, and it’s a device you can readily build in your own workshop.

The device consists of a wrist cuff that mounts twelve pressure sensors, arranged radially about the forearm. The pressure sensors are a custom design, using magnets, hall effect senors, and springs to detect the motion of the muscles in the vicinity of the wrist.

We first looked at this project last year, and since then, it’s advanced in leaps and bounds. The basic data from the pressure sensors now feeds into a trained machine learning model, which then predicts the user’s actual finger movements. The long-term goal is to create a device that can control prosthetic hands based on muscle contractions in the forearm. Ideally, this would be super-intuitive to use, requiring a minimum of practice and training for the end user.

It’s great to see machine learning combined with innovative mechanical design to serve a real need. We can’t wait to see where the OpenMuscle project goes next.

Continue reading “Hackaday Prize 2023: Finger Tracking Via Muscle Sensors”

A clear flexible PCB with a number of gold electrodes on one end. It is wrapped over a black cable to demonstrate its flexibility. A set of dashed white lines goes from one end to a zoomed in image of the circuit structure inset in the top right of the image.

Biohybrid Implant Patches Broken Nerves With Stem Cells

Neural interfaces have made great strides in recent years, but still suffer from poor longevity and resolution. Researchers at the University of Cambridge have developed a biohybrid implant to improve the situation.

As we’ve seen before, interfacing electronics and biological systems is no simple feat. Bodies tend to reject foreign objects, and transplanted nerves can have difficulty assuming new roles. By combining flexible electronics and induced pluripotent stem cells into a single device, the researchers were able to develop a high resolution neural interface that can selectively bind to different neuron types which may allow for better separation of sensation and motor signals in future prostheses.

As is typically the case with new research, the only patients to benefit so far are rats and only on the timescale of the study (28 days). That said, this is a promising step forward for regenerative neurology.

We’re no strangers to bioengineering here. Checkout how you can heal faster with electronic bandages or build a DIY vibrotactile stimulator for Coordinated Reset Stimulation (CRS).

(via Interesting Engineering)

A cinematic shot of the resulting prosthetic finger attached to the glove

Missing Finger Gets A Simple Yet Fancy Replacement

The possibility of a table saw accident is low, but never zero — and [Nerdforge] has lost a finger to this ever-useful but dangerous contraption. For a right-handed person, losing the left hand pinky might not sound like much, but the incident involved some nerve damage as well, making inaccessible a range of everyday motions we take for granted. For instance, holding a smartphone or a pile of small objects without dropping them. As a hacker, [Nerdforge] decided to investigate just how much she could do about it.

On Thingiverse, she’s hit a jackpot: a parametric prosthetic finger project by [Nicholas Brookins], and in no time, printed the first version in resin. The mechanics of the project are impressive in their simplicity — when you close your hand, the finger closes too. Meant to be as simple as possible, this project only requires a wrist mount and some fishing line. From there, what could she improve upon? Aside from some test fits, the new finger could use a better mounting system, it could stand looking better, and of course, it could use some lights.

For a start, [Nerdforge] redesigned the mount so that the finger would instead fasten onto a newly-fingerless glove, with a few plastic parts attached into that. Those plastic parts turned out to be a perfect spot for a CR2032 battery holder and a microswitch, wired up to a piece of LED filament inserted into the tip of the finger. As for the looks, some metal-finish paint was found to work wonders – moving the glove’s exterior from the “printed project” territory into the “futuristic movie prop” area.

The finger turned out to be a resounding success, restoring the ability to hold small objects in ways that the accident made cumbersome. It doesn’t provide much in terms of mechanical strength, but it wasn’t meant to do that. Now, [Nerdforge] has hacked back some of her hand’s features, and we have yet another success story for all the finger-deficient hackers among us. Hacker-built prosthetics have been a staple of Hackaday, with the OpenBionics project in particular being a highlight of 2015 Hackaday Prize — an endearing demonstration of hackers’ resilience.

Continue reading “Missing Finger Gets A Simple Yet Fancy Replacement”

A man with dark skin in a red shirt and khaki shorts sits in a chair. His left leg has a prosthetic below the knee. The upper half of the prosthethic is an off white plastic socket with flecks of different off white plastic throughout hinting at the recycled nature of the plastic. The lower half is a metal tube attached to an artificial foot in black sandals.

Precious Plastic Prosthetics

Plastic waste is a major problem, but what if you could turn the world’s trash into treasure? [Yayasan Kaki Kita Sukasada (YKKS)] in Indonesia is doing this by using recycled plastic to make prosthetic legs.

Polypropylene source material is shredded and formed into a sheet which is molded into the required shape for the socket. A layer of cloth and foam is used to cushion the interface between the patient and the socket itself. Using waste plastic to make parts for the prosthetics lowers the price for patients as well as helps to keep this material out of the landfill.

What makes this project really exciting is that [YKKS] employs disabled people who develop the prosthetics and also trains patients on how to maintain and repair their prosthetics with easily sourced tools and materials. With some medical device companies abandoning their devices, this is certainly a welcome difference.

We’ve previously covered the Precious Plastic machines used to make the plastic sheets and the organization’s developments at small scale injection molding.

Continue reading “Precious Plastic Prosthetics”

A prosthetic eye anodized green around the edges with a yellow and blue "iris" surrounding an LED center.

Skull Lamp Illuminates The Cyberpunk Future

Cyberpunk is full of characters with cool body mods, and [bsmachinist] has made a prosthetic eye flashlight (TikTok) that is both useful and looks futuristic. [via Reddit]

[bsmachinist] has been machining titanium prosthetic eyes for over five years now, and this latest iteration, the Skull Lamp, has a high brightness LED that he says is great for reading books at night as well as any other task you might have for a headlamp. Battery life is reported as being 20 hours, and the device is switched by passing a magnet (Instagram) near the prosthetic.

We love seeing how prosthetics have advanced in the last few years with the proliferation of advanced tools for makers. Some other interesting prosthetics we’ve covered are this DIY Socket for Prosthetics with a built-in charger and power supply and several different prosthetic projects for kids including these Heroic Prosthetics by Open Bionics, the E-Nable Alliance, and a Kid Who Designed his Own Prosthetic.

Continue reading “Skull Lamp Illuminates The Cyberpunk Future”