Laser Artistry Hack Chat

Join us on Wednesday, April 1 at noon Pacific for the Laser Artistry Hack Chat with Seb Lee-Delisle!

It’s hard to forget the first time you see a laser light show. A staple at concerts starting in the 1980s, seeing a green laser lance out over the heads of tens of thousands of screaming fans to trace out an animated figure or pulsating geometric shapes was pure fascination, and wondering how it was all done was half the fun. As we all know now, it was all done with mirrors, tiny and connected to low-inertia galvanometers capable of the twitchiest of movements, yet precise enough to position the beam of light exactly where it needed to be to create the desired illusion. It was engineering, science, and art all wrapped up into one package.

Fast forward to the present day, and laser show technology has certainly advanced. Bulky laser tubes have been replaced by solid-state devices, more colors are available, and galvo designs have improved. The art and artistry of the laserist have grown with the tech, which is where our guest Seb Lee-Delisle comes into his own. We’ve featured some of Seb’s work before, like an Asteroids laser vector display and enormous public laser displays. And now he’ll stop by to talk about how the art and the tech combine in his hands to produce something much greater than the sum of its parts.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 1 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Laser Artistry Hack Chat”

Coronavirus Testing Follow-Up: Rapid Immunologic Testing

When I started writing my recent article on COVID-19 testing, I assumed that I would be doing a compare and contrast sort of article. Like many people, I assumed that the “gold standard” test would be the reverse transcriptase-polymerase chain reaction (RT-PCR) test that I described in some detail. And indeed it is, but it’s not without its problems, such as the lack of certified labs and the need for trained technicians to run the samples. I also assumed there would be another test, a simple serological test that could use antibodies to discern if there was an active or even a previous, resolved infection.

At the time I wrote the first article, I could find no indication of an immunologic test for COVID-19 (more specifically, a test for SARS-Cov-2, the virus that causes COVID-19). But almost as rapidly as the number of COVID-19 cases rises, the news changes, and it appears that simple, rapidly performed antibody tests are now or soon will be available. They likely won’t replace the gold standard RT-PCR test, but they do stand to be a game-changer for the front line providers and the victims of this disease. So it pays to take a quick look at immunoassays for infectious diseases, and learn how they work.

Continue reading “Coronavirus Testing Follow-Up: Rapid Immunologic Testing”

Hackaday Links Column Banner

Hackaday Links: March 29, 2020

It turns out that whacking busted things to fix them works as well on Mars as it does on Earth, as NASA managed to fix its wonky “mole” with a little help from the InSight lander’s robotic arm. Calling it “percussive maintenance” is perhaps a touch overwrought; as we explained last week, NASA prepped carefully for this last-ditch effort to salvage the HP³ experiment, and it was really more of a gentle nudge that a solid smack with the spacecraft’s backhoe bucket. From the before and after pictures, it still looks like the mole is a little off-kilter, and there was talk that the shovel fix was only the first step in a more involved repair. We’ll keep an ear open for more details — this kind of stuff is fascinating, and beats the news from Earth these days by a long shot.

Of course, the COVID-19 pandemic news isn’t all bad. Yes, the death toll is rising, the number of cases is still growing exponentially, and billions of people are living in fear and isolation. But ironically, we’re getting good at community again, and the hacker community is no exception. People really want to pitch in and do something to help, and we’ve put together some resources to help. Check out our Hackaday How You Can Help spreadsheet, a comprehensive list of what efforts are currently looking for help, plus what’s out there in terms of Discord and Slack channels, lists of materials you might need if you choose to volunteer to build something, and even a list of recent COVID-19 Hackaday articles if you need inspiration. You’ll also want to check out our calendar of free events and classes, which might be a great way to use the isolation time to better your lot.

Individual hackers aren’t the only ones pitching in, of course. Maybe of the companies in the hacker and maker space are doing what they can to help, too. Ponoko is offering heavy discounts for hardware startups to help them survive the current economic pinch. They’ve also enlisted other companies, like Adafruit and PCBWay, to join with them in offering similar breaks to certain customers.

More good news from the fight against COVID-19. Folding@Home, the distributed computing network that is currently working on folding models from many of the SARS-CoV-2 virus proteins, has broken the exaFLOP barrier and is now the most powerful computer ever built. True, not every core is active at any given time, but the 4.6 million cores and 400,000-plus GPUs in the network pushed it over from the petaFLOP range of computers like IBM’s Summit, until recently the most powerful supercomputer ever built. Also good news is that Team Hackaday is forming a large chunk of the soul of this new machine, with 3,900 users and almost a million work units completed. Got an old machine around? Read Mike Sczcys’ article on getting started and join Team Hackaday.

And finally, just because we all need a little joy in our lives right now, and because many of you are going through sports withdrawal, we present what could prove to be the new spectator sports sensation: marble racing. Longtime readers will no doubt recognize the mad genius of Martin and his Marble Machine X, the magnificent marble-dropping music machine that’s intended as a follow-up to the original Marble Machine. It’s also a great racetrack, and Martin does an amazing job doing both the color and turn-by-turn commentary in the mock race. It’s hugely entertaining, and a great tour of the 15,000-piece contraption. And when you’re done with the race, it’s nice to go back to listen to the original Marble Machine tune — it’s a happy little song for these trying times.

Whirling Shutters On This Field Mill Measure Electrostatic Charges At Distance

Hardly a person hasn’t experienced the sudden, sharp discharge of static electricity, especially on a crisp winter’s day. It usually requires a touch, though, the classic example being a spark from finger to doorknob after scuffing across the carpet. But how would one measure the electrostatic charge of an object without touching it? Something like this field mill, which is capable of measuring electrostatic charge over a range of several meters, will do the trick.

We confess to not having heard of field mills before, and found [Leo Fernekes]’ video documenting his build to be very instructive. Field mills have applications in meteorology, being used to measure the electrostatic state of the atmosphere from the ground. They’ve also played a role in many a scrubbing of rocket launches, to prevent the missile from getting zapped during launch.

[Leo]’s mill works much like the commercial units: a grounded shutter rotates in front of two disc-shaped electrodes, modulating the capacitance of the system relative to the outside world. The two electrodes are fed into a series of transimpedance amplifiers, which boost the AC signal coming from them. A Hall sensor on the shutter allows sampling of the signal to be synchronized to the rotation of the shutter; this not only generates the interrupts needed to sample the sine wave output of the amplifier at its peaks and troughs, but it also measures whether the electrostatic field is positive or negative. Check out the video below for a great explanation and a good looking build with a junk-bin vibe to it.

Meteorological uses aside, we’d love to see this turned toward any of the dozens of Tesla coil builds we’ve seen. From the tiny to the absurd, this field mill should be able to easily measure any Tesla coil’s output with ease.

Continue reading “Whirling Shutters On This Field Mill Measure Electrostatic Charges At Distance”

[Ben Krasnow] Rolls Old School Camera Out For Photolithography

In a time when cameras have been reduced to microchips, it’s ironic that the old view camera, with its bellows and black cloth draped over the viewscreen for focusing, endures as an icon for photography. Such technology appears dated and with no application in the modern world, but as [Ben Krasnow] shows us, an old view camera is just the thing when you want to make homemade microchips. (Video, embedded below.)

Granted, the photolithography process [Ben] demonstrates in the video below is quite a bit upstream from the creation of chips. But mastering the process on a larger scale is a step on the way. The idea is to create a high-resolution photograph of a pattern — [Ben] chose both a test pattern and, in a nod to the season, an IRS tax form — that can be used as a mask. The camera he chose is a 4×5 view camera, the kind with lens and film connected by adjustable bellows. He found that modifications were needed to keep the film fixed at the focal plane, so he added a vacuum port to the film pack to suck the film flat. Developing film has always been magical, and watching the latent images appear on the film under the red light of the darkroom really brings us back — we can practically smell the vinegary stop solution.

[Ben] also steps through the rest of the photolithography process — spin coating glass slides with photoresist, making a contact print of the negative under UV light, developing the print, and sputtering it with titanium. It’s a fascinating process, and the fact that [Ben] mentions both garage chip-maker [Sam Zeloof] and [Justin Atkin] from the Thought Emporium means that three of our favorite YouTube mad scientists are collaborating. The possibilities are endless.

Continue reading “[Ben Krasnow] Rolls Old School Camera Out For Photolithography”

Silicone And AI Power This Prayerful Robotic Intercessor

Even in a world that is as currently far off the rails as this one is, we’re going to go out on a limb and say that this machine learning, servo-powered prayer bot is going to be the strangest thing you see today. We’re happy to be wrong about that, though, and if we are, please send links.

“The Prayer,” as [Diemut Strebe]’s work is called, may look strange, but it’s another in a string of pieces by various artists that explores just what it means to be human at a time when machines are blurring the line between them and us. The hardware is straightforward: a silicone rubber representation of a human nasopharyngeal cavity, servos for moving the lips, and a speaker to create the vocals. Those are generated by a machine-learning algorithm that was trained against the sacred texts of many of the world’s major religions, including the Christian Bible, the Koran, the Baghavad Gita, Taoist texts, and the Book of Mormon. The algorithm analyzes the structure of sacred verses and recreates random prayers and hymns using Amazon Polly that sound a lot like the real thing. That the lips move in synchrony with the ersatz devotions only adds to the otherworldliness of the piece. Watch it in action below.

We’ve featured several AI-based projects that poke at some interesting questions. This kinetic sculpture that uses machine learning to achieve balance comes to mind, while AI has even been employed in the search for spirits from the other side.

Continue reading “Silicone And AI Power This Prayerful Robotic Intercessor”

Coronavirus Testing: Just The Facts

The news these days is dominated by the one big story: the COVID-19 pandemic. Since the first reports of infection surfaced in China sometime in late 2019, the novel coronavirus that causes the disease, bloodlessly dubbed SARS-CoV-19, has swept around the globe destroying lives, livelihoods, and economies. Getting a handle on the disease has required drastic actions by governments and sacrifices by citizens as we try to slow the rate of infection

As with all infectious diseases, getting ahead of COVID-19 is a numbers game. To fight the spread of the virus, we need to know who has it, where they are, where they’ve been, and whom they’ve had contact with. If we are unable to gather the information needed to isolate potential carriers, all that we can do is impose mass quarantines and hope for the best. Hence the need for mass COVID-19 testing, and the understandable hue and cry about its slow pace and the limited availability of test kits.

But what exactly do these test kits contain? What makes mass testing so difficult to implement? As we shall see, COVID-19 testing is anything but simple, even if the underlying technology, PCR, is well-understood and readily available. A lot of the bottlenecks are, as usual, bureaucratic, but there are technical limits too. Luckily, there are clever ways around those restrictions, but understanding the basics of COVID-19 testing is the best place to start.

Continue reading “Coronavirus Testing: Just The Facts”