A Switching Power Supply, 1940s-Style

“They don’t build ’em like they used to.” There’s plenty of truth to that old saw, especially when a switch-mode power supply from the 1940s still works with its original parts. But when said power supply is about the size of a smallish toddler and twice as heavy, building them like the old days isn’t everything it’s cracked up to be.

The power supply that [Ken Shirriff] dives into comes from an ongoing restoration of a vintage teletype we covered recently. In that post we noted the “mysterious blue glow” of the tubes in the power supply, which [Ken] decided to look into further. The tubes are Thyratrons, which can’t really be classified as vacuum tubes since they’re filled with various gasses. Thyratrons are tubes that use ionized gas – mercury vapor in this case – to conduct large currents. In this circuit, the Thyratrons are used as half-wave rectifiers that can be rapidly switched on and off by a feedback circuit. That keeps the output voltage fixed at the nominal 140V DC required by the teletype, with a surprisingly small amount of ripple. The video below is from a series on the entire restoration; this one is cued to where the power supply is powered up for the first time. It’s interesting to see the Thyratrons being switched at about 120 Hz when the supply is under load.

Cheers to [Ken] and his retrocomputing colleagues for keeping the old iron running. Whether the target of his ministrations is a 1974 scientific calculator or core memory from an IBM 1401, we always enjoy watching him work.

Continue reading “A Switching Power Supply, 1940s-Style”

A Dramatic Demo Of AC Versus DC Switching

Switches seem to be the simplest of electrical components – just two pieces of metal that can be positioned to either touch each other or not. As such it would seem that it shouldn’t matter whether a switch is used for AC or DC. While that’s an easy and understandable assumption, it can also be a dangerous one, as this demo of AC and DC switching dramatically reveals.

Using a very simple test setup, consisting of an electric heater for a load, a variac to control the voltage, and a homemade switch, [John Ward] walks us through the details of what happens when those contacts get together. With low-voltage AC, the switch contacts exhibit very little arcing, and even with the voltage cranked up all the way, little more than a brief spark can be seen on either make or break. Then [John] built a simple DC supply with a big rectifier and a couple of capacitors to smooth things out and went through the same tests. Even at a low DC voltage, the arc across the switch contacts was dramatic, particularly upon break. With the voltage cranked up to the full 240-volts of the UK mains, [John]’s switch was essentially a miniature arc welder, with predictable results as the plastic holding the contacts melted. Don your welding helmet and check out the video below.

As dramatic as the demo is, it doesn’t mean we won’t ever be seeing DC in the home. It just means that a little extra engineering is needed to make sure that all the components are up to snuff.

Continue reading “A Dramatic Demo Of AC Versus DC Switching”

A Vacuum Tube And Barbecue Lighter X-Ray Generator

A certain subset of readers will remember a time when common knowledge held that sitting too close to the TV put you in mortal peril. We were warned to stay at least six feet back to avoid the X-rays supposedly pouring forth from the screen. Nobody but our moms believed it, so there we sat, transfixed and mere inches from the Radiation King, working on our tans as we caught up on the latest cartoons. We all grew up mostly OK, so it must have been a hoax.

Or was it? It turns out that getting X-rays from vacuum tubes is possible, at least if this barbecue lighter turned X-ray machine is legit. [GH] built it after playing with some 6J1 rectifier tubes and a 20-kV power supply yanked from an old TV, specifically to generate X-rays. It turned out that applying current between the filament and the plate made a Geiger counter click, so to simplify the build, the big power supply was replaced with the piezoelectric guts from a lighter. That worked too, but not for long — the tube was acting as a capacitor, storing up charge each time the trigger on the lighter was pulled, eventually discharging through and destroying the crystal. A high-voltage diode from a microwave oven in series with the crystal as a snubber fixed the problem, and now X-rays are as easy as lighting a grill.

We have to say we’re a wee bit skeptical here, and would love to see a video of a test. But the principle is sound, and if it works it’d be a great way to test all those homebrew Geiger counters we’ve featured, like this tiny battery-powered one, or this one based on the venerable 555 timer chip.

Oddball Mercury Vapor Rectifier Is A Tube Geek’s Delight

Even if you aren’t a tube aficionado, you can’t help but be mesmerized by the blue glow inside a mercury vapor rectifier when it operates. It looks less like early 20th century tech and more like something that belongs on a Star Trek set. [Uniservo] acquired an 866 rectifier that was interesting due to the markings, which he explains in detail in the video below. Most people though will probably want to skip to closer to its end to see that distinctive blue glow. The exact hue depends on the mercury vapor pressure and usually contains a fair amount of ultraviolet light.

These tubes have an interesting history dating back to 1901, the year [Peter Cooper Hewitt] developed a mercury vapor light which was much more efficient than conventional bulbs. They had two main problems, they required some special process to get the mercury inside to vaporize when you turned them on, but worse still, the light was blue-green which isn’t really appropriate for home and office lighting. In 1902 though, [Hewitt] realized the tube would act as a rectifier. Electrons could readily flow out of the mercury vapor that was the cathode, while the carbon anodes didn’t give up electrons as readily. This was important because up until then, there wasn’t an easy way to convert AC to DC. The usual method was to use an AC motor coupled to a DC generator or a similar mechanical arrangement known as a rotary converter.

In later decades the mercury vapor lamp would wind up with a phosphor coating that converted the ultraviolet light to cool white light and became the fluorescent bulb, so while the rectifier mostly gave way to more efficient methods, [Hewitt’s] bulb has been in use for many years.

Continue reading “Oddball Mercury Vapor Rectifier Is A Tube Geek’s Delight”

How Does A Voltage Multiplier Work?

If you need a high voltage, a voltage multiplier is one of the easiest ways to obtain it. A voltage multiplier is a specialized type of rectifier circuit that converts an AC voltage to a higher DC voltage. Invented by Heinrich Greinacher in 1919, they were used in the design of a particle accelerator that performed the first artificial nuclear disintegration, so you know they mean business.

Theoretically the output of the multiplier is an integer times the AC peak input voltage, and while they can work with any input voltage, the principal use for voltage multipliers is when very high voltages, in the order of tens of thousands or even millions of volts, are needed. They have the advantage of being relatively easy to build, and are cheaper than an equivalent high voltage transformer of the same output rating. If you need sparks for your mad science, perhaps a voltage multiplier can provide them for you.

Continue reading “How Does A Voltage Multiplier Work?”

Build The Simplest Bipolar Power Supply

How many integrated circuits do you need to build up a power supply that’ll convert mains AC into a stable DC voltage? Would you believe, none? We just watched this video by [The Current Source] (embedded below), where he builds exactly that. If you’re in the mood for a very well done review of diode bridges as well as half- and full-wave rectifiers, you should check it out.

First off, [TCS] goes through the basics of rectification, and demonstrates very nicely on the oscilloscope how increasing capacitance on the output smooths out the ripple. (Hint: more is better.) And then it’s off to build. The end result is a very simple unregulated power supply — just a diode bridge with some capacitors on the output — but by using really big capacitors he gets down into the few-millivolt range for ripple into a constant load.

The output voltage of this circuit will depend on the average current drawn, but for basically static loads this circuit should work well enough, and the simplicity of just tossing gigantic capacitors at the problem is alluring. (We would toss in a linear regulator somewhere.)

Quibbling over circuit designs isn’t why you’re watching this video, though. It’s because you want to learn something. Check out the rest of his videos as well. [TCS] has only been at it a little while, but it looks like this is going to be a channel to watch.

https://www.youtube.com/watch?v=0iDCsrMM7M0

Trash-heap Water Wheel Recharges IPhone In The Woods

We’ve all been there – hiking in the woods with a dead phone battery. No GPS, no way to Tweet that selfie from some hill with a great vista. It’s a disaster! But not if you have access to a little trailside junk and have the ingenuity to build this field-expedient water wheel generator to recharge your phone.

OK, it’s a stretch to imagine finding all the things needed for [Thomas Kim]’s hack. We’re only guessing at the BOM – the video below has little commentary, so what you see is what you get – but it looks like a garbage can at the trailhead might at least yield the materials needed to build the turbine. Water bottle bottoms and a couple of plastic picnic plates form the Pelton-like impeller, the frame looks like an old drying rack, and the axle appears to be a campfire skewer. But you might have a hard time finding the electrical side of the build, which consists of a stepper motor, a rectifier, and an electrolytic cap. Then again, you could get lucky and find a cast-off printer by the side of the road. No matter how he got the materials, it’s pretty cool to see an iPhone recharging next to a babbling brook in the woods.

Looking for a little more oomph from your trash-heap hydroelectric turbine? Maybe you need to look at this washing machine power plant build.

Continue reading “Trash-heap Water Wheel Recharges IPhone In The Woods”