Start Your Engines: The FPV Contest Begins Now!

There are places that you can go in person, but for everything else, there’s FPV. Whether you’re flying race quads, diving the depths in a yellow submarine, or simply roving the surface of the land, we want to see your builds. If it’s remote controlled, and you feel like you’re in the pilot’s seat, it’s FPV.

That’s you in the car.

When you say “first person view” many of you will instinctively follow up with “flight” or “drone”. But given the ease of adding a camera and remote control to almost any vehicle, there’s no reason to only fly the FPV skies. (Of course, we want to see your crazy quadcopter builds too.)

We went looking for a few less-traditional examples to whet your appetite, and we found a lot. There are super-cute FPV bots for indoors and more robust tanks for cruising around the neighborhood. In the summer, you’ll probably need an FPV lawnmower, and for the winter, naturally, an FPV snowblower or a budget-friendly FPV snow-boat. Or skip the outdoors entirely and terrorize the pool with an FPV sub.

This contest isn’t exclusively about the vehicles either. If you’re working on the tech that makes FPV possible, we want you to enter. For instance, this simple quad/drone tracker will help keep your video feed running and your mind on flying. This cockpit will make the immersion more complete. And nobody likes the jello-cam effect that excess vibration can cause, so we’d like to see camera hacks as well.

And of course, your quads. Is your FPV quad too fast, too light, or does it fly too far? Show us. The contest starts now and runs until Jan 3, 2023, and there are three $150 shopping sprees courtesy of Digi-Key on the line. Get hacking!

Keeping An Eye On Heating Oil

Energy costs around the world are going up, whether it’s electricity, natural gas, or gasoline. This is leading to a lot of people looking for ways to decrease their energy use, especially heading into winter in the Northern Hemisphere. As the saying goes, you can’t manage what you can’t measure, so [Steve] has built this system around monitoring the fuel oil level for his home’s furnace.

Fuel oil is an antiquated way of heating, but it’s fairly common in certain parts of the world and involves a large storage tank typically in a home’s basement. Since the technology is so dated, it’s not straightforward to interact with these systems using anything modern. This fuel tank has a level gauge showing its current percentage full. A Raspberry Pi is set up nearby with a small camera module which monitors the gauge, and it runs OpenCV to determine the current fuel level and report its findings.

Since most fuel tanks are hidden in inconvenient locations, it makes checking in on the fuel level a breeze and helps avoid running out of fuel during cold snaps. [Steve] designed this project to be reproducible even if your fuel tank is different than his. You have other options beyond OpenCV as well; this fuel tank uses ultrasonic sensors to measure the fuel depth directly.

Custom Controller Ups Heat Pump Efficiency

Heat Pumps are an extremely efficient way to maintain climate control in a building. Unlike traditional air conditioners, heat pumps can also effectively work in reverse to warm a home in winter as well as cool it in summer; with up to five times the efficiency of energy use as a traditional electric heater. Even with those tremendous gains in performance, there are still some ways to improve on them as [Martin] shows us with some modifications he made to his heat pump system.

This specific heat pump is being employed not for climate control but for water heating, which sees similar improvements in efficiency over a standard water heater. The problem with [Martin]’s was that even then it was simply running much too often. After sleuthing the energy losses and trying a number of things including a one-way valve on the heating water plumbing to prevent siphoning, he eventually found that the heat pump was ramping up to maximum temperature once per day even if the water tank was already hot. By building a custom master controller for the heat pump which includes some timing relays, the heat pump only runs up to its maximum temperature once per week.

While there are some concerns with Legionnaire’s bacteria if the system is not maintained properly, this modification still meets all of Australia’s stringent building code requirements. His build is more of an investigative journey into a more complex piece of machinery, and his efforts net him a max energy usage of around 1 kWh per day which is 50% more efficient than it was when it was first installed. If you’re looking to investigate more into heat pumps, take a look at this DIY Arduino-controlled mini heat pump.

Continue reading “Custom Controller Ups Heat Pump Efficiency”

Upgraded 3D Printed Tank Gets Better Drivetrain And Controls

When it comes to 3D printed builds, they’re often limited in size due to the small build volume of most printers. However, [Ivan Miranda] has always gone big with his builds, and his latest tank design shows that off in spades.

Looks comfy!

[Ivan] has been working on printed human-sized tanks for years, and his latest revision aims to solve many of the problems that have hampered its performance in the past. A belt drive is the first major upgrade, aiming to improve the reliability of the drivetrain which has been a pain point in the past. The motor mounts also get built out of aluminium this time to help keep things cooler, as melting was a potential concern previously.

The tank’s controls are also upgraded, this time using a simple pedal system to control the brushless motors for easier driving. There’s even a printed seat for better ergonomics. The result is a giant tank big enough for an adult human, with the bonus that it’s now easy to steer and no longer requires [Ivan] to lie down inside to fit.

[Ivan’s] big printers are key to his success on big builds. One new part for the tank weighs a full 5.8 kg, printed in just 2.5 days! We can’t wait to see what giant thing he builds next. Word is the tank will be getting a turret, too. Video after the break.

Continue reading “Upgraded 3D Printed Tank Gets Better Drivetrain And Controls”

3D Printed Tank Takes On The Elements

Commercially available radio control tanks are fun and all, but sometimes you’ve just got to build your own. [Let’s Print] did just that, whipping up a tank on his 3D printer before taking it out in the snow.

The tank is a fairly straightforward build, relying on a pair of brushed motors for propulsion, controlled by twin speed controllers hooked up to standard radio control hardware. Everything else is bespoke, however, from the 3D printed gearboxes, to the chassis and the rather aggressive-looking tracks. The pointed teeth of the latter leave deep indentations when the tank cruises around on mud, though weren’t quite enough to stop the little tank from getting high-centered in deep snow.

The build isn’t for the impatient, however. [Let’s Print] notes that the tracks alone took over 80 hours to run off in PETG, let alone the rest of the frame and gearboxes. However, we’re sure it was a great learning experience, and great fun to drive outside. Now the next step is surely to go bigger. Video after the break.

Continue reading “3D Printed Tank Takes On The Elements”

Field Guide To Shipping Containers

In the 1950s, trucking magnate Malcom McLean changed the world when he got frustrated enough with the speed of trucking and traffic to start a commercial shipping company in order to move goods up and down the eastern seaboard a little faster. Within ten years, containers were standardized, and the first international container ship set sail in 1966. The cargo? Whisky for the U.S. and guns for Europe. What was once a slow and unreliable method of moving all kinds of whatever in barrels, bags, and boxes became a streamlined operation — one that now moves millions of identical containers full of unfathomable miscellany each year.

When I started writing this, there was a container ship stuck in the Suez canal that had been blocking it for days. Just like that, a vital passage became completely clogged, halting the shipping schedule of everything from oil and weapons to ESP8266 boards and high-waist jeans. The incident really highlights the fragility of the whole intermodal system and makes us wonder if anything will change.

A rainbow of dry storage containers. Image via xChange

Setting the Standard

We are all used to seeing the standard shipping container that’s either a 10′, 20′, or 40′ long box made of steel or aluminum with doors on one end. These are by far the most common type, and are probably what come to mind whenever shipping containers are mentioned.

These are called dry storage containers, and per ISO container standards, they are all 8′ wide and 8′ 6″ tall. There are also ‘high cube’ containers that are a foot taller, but otherwise share the same dimensions. Many of these containers end up as some type of housing, either as stylish studios, post-disaster survivalist shelters, or construction site offices. As the pandemic wears on, they have become so much in demand that prices have surged in the last few months.

Although Malcom McLean did not invent container shipping, the strict containerization standards that followed in his wake prevent issues during stacking, shipping, and storing, and allow any container to be handled safely at any port in the world, or load onto any rail car with ease. Every bit of the container is standardized, from the dimensions to the way the container’s information is displayed on the end. At most, the difference between any two otherwise identical containers is the number, the paint job, and maybe a few millimeters in one dimension.

Standard as they may be, these containers don’t work for every type of cargo. There are quite a few more types of shipping containers out there that serve different needs. Let’s take a look at some of them, shall we?

Continue reading “Field Guide To Shipping Containers”

Should I Use Wheels Or Tracks?

When it comes to dominating offroad performance, many people’s first thought is of tracked vehicles. Bulldozers, tanks and excavators all use treads, and manage to get around in difficult terrain without breaking a sweat. Today, we’re exploring just what makes tracked vehicles so capable, as well as their weaknesses.

It’s All About Ground Pressure

The various parts of a tank’s propulsion system.

Let’s first look at how tank tracks work. There are a huge variety of designs, with differences depending on application. Different trends have been followed over time, and designs for military use in combat differ from those used for low-speed construction machines, for example. But by looking at a basic tank track design, we can understand the basic theory. On tanks, the track or tread itself is usually made up of individual steel links that are connected together with hinges, though other machines may use rubber tracks instead. The tracks are wrapped around one or more drive wheels, often cogged, which directly pull on the track. On the bottom of the vehicle are the road wheels, which ride on top of the track where it lies on the ground.  The weight of the vehicle is carried through the road wheels and passed on to the tread, spreading out the load across a broader area. Outside of this, the track system may also have one or more idler wheels used to keep the track taught, as well as return rollers to guide the track back around without touching the road wheels.

Continue reading “Should I Use Wheels Or Tracks?”