Creating A Joule-Thomson Cryocooler And A Little Bit Of History At Home

The fun part about crycoolers is that there are so many different and exciting ways to make stuff cold, based on a wide variety of physics. This is why after first exploring the Stirling/GM cycle and vapor-compression to create a cryocooler that he could liquefy nitrogen with, [Hyperspace Pirate] is exploring a Joule-Thomson cooler, which is also misspelled as ‘Joule-Thompson’ by those who don’t mind take some liberties with history. Either way, the advantage of the adiabatic Joule-Thomson effect is that it is significantly simpler than the other methods — having been invented in the 19th century and used for the earliest forms of refrigeration.

This is what peak Joule-Thomson prototype cooler performance looks like.
This is what peak Joule-Thomson prototype cooler performance looks like.

The big difference between it and other technologies is that the effect is based on throttling the flow of a gas as it seeks to expand, within specific temperature and pressure ranges to ensure that the temperature change effect is positive (i.e. the temperature of the gas decreases). The net result is that of a cooling effect, which as demonstrated in the video can be used with successive stages involving different gases, or a gas mixture, to reach a low enough temperature at which nitrogen (contained in the same gas mixture) liquefies and can be collected.

Although not a very efficient process, if your local electricity costs allow it, running the compressor in a closed loop version isn’t that expensive and worth it for the science alone. Naturally, as with any experimental setup involving a range of gases, a compressor and other components, getting it to run perfectly on the first try is basically impossible, which is why this is so far Part 1 of another series on cryocoolers at home (or in the garage).

If you’re interested in the previous work [Hyperspace Pirate] has done with DIY cyrocoolers, take a look at our coverage from earlier this year.

Continue reading “Creating A Joule-Thomson Cryocooler And A Little Bit Of History At Home”

No Moving Parts LiDAR

Self-driving cars often use LiDAR — think of it as radar using light beams. One limitation of existing systems is they need some method of scanning the light source around, and that means moving parts. Researchers at the University of Washington have created a laser on a chip that uses acoustic waves to bend the laser, avoiding physically moving parts. The paper is behind a paywall, but the University has a summary poster, and you can also find an overview over on [Geekwire].

The resulting IC uses surface acoustic waves and can image objects more than 100 feet away. We would imagine this could be helpful for other applications like 3D scanning, too. The system weighs less than a conventional setup, too, so that would be valuable in drones and similar applications.

Continue reading “No Moving Parts LiDAR”

Inexpensive Ham Radio Gets Upgrades Thanks To A Trojan

Love them or hate them, the crop of cheap hand-held amateur radio transceivers is here to stay. They’re generally horrible radios, often smearing spurious emissions across the spectrum, but they’re cheap enough to throw in a glove box for emergencies, and they invite experimentation — for instance, modifying the firmware to add functionality the OEM didn’t think to offer.

The new hotness in this class of radios is the Quansheng UV-K5, a two-band transceiver you can pick up for about $40, and we suspect it’ll get hotter still with this firmware trojan by [Piotr (SQ9P)]. We’ve already seen a firmware hack for these radios, one that aimed at unlocking the full frequency range of the RF chip at the heart of the radio. Honestly, we’re not huge fans of these mods, which potentially interfere with other allocations across multiple bands. But [Piotr]’s hacks seem a bit more innocuous, focusing mainly on modifying the radio’s display and adding useful features, such as a calibrated received signal strength bar graph and a numerical RSSI display. The really neat new feature, though, is the spectrum display, which shows activity across a 2-MHz slice of spectrum centered on the currently set frequency. And just because he could, [Piotr] put in a game of Pong.

[Piotr]’s description of the mod as a trojan seems apt since his new programs run in parallel to the OEM firmware by wrapping its vector table. We’d imagine other mods are possible, and we’re keen to see what people come up with for these hackable little units. Just make sure you’re staying within the law, especially in the United States — the FCC does not play games (third item).

Better Noise Reduction With Science

Most noise-blocking headphones fall into two categories: they use some kind of material to absorb or scatter noise, or they use active cancellation that creates a signal to oppose the noise signal. As you’ve probably noticed, both of these approaches have limitations. Now, Swiss scientists think they have a new method that will work better. In Nature Communications, they describe a noise cancellation system that moves air by using ionization instead of a conventional transducer.

With the cool name plasmaacoustic metalayers, the technique uses a controlled corona discharge to create very thin layers of plasma between a metal grid and thin wires. With no voltage, sound passes freely. Applying a voltage across the assembly produces ions and moves air with very low inertia, unlike a typical speaker. By controlling the reverse pressure of air, the system can cancel incoming noise picked up by a microphone.

Continue reading “Better Noise Reduction With Science”

Adding Portals To Quake

For those who have played Quake extensively, adding portals seems unnecessary, as teleporters are already a core part of the game mechanics. What [Matthew Earl] accomplishes is more of the Portal style of portal by rendering what is on the other side of the portal with a seamless teleportation transition.

Of course, Quake is an old game with a software renderer. Just throwing another camera into the scene, rendering to another texture, and then mapping that texture to the scene isn’t an option. Quake uses an edge rasterizer and generates spans along scanlines that track where edges intersect the current scanline. Rather than making expensive per-pixel comparisons, [Matt] stashes the portal spans and renders them in a second render, so even with multiple portals, only a single screen’s worth of pixels are rendered.

However, this technique has no near clipping plane, which means objects can appear in the portal that don’t make any sense as they are in front of the portal’s viewpoint. Luckily, Quake has an ingenious method for polygon occlusion: the BSP. While [Matt] is manually checking polygons, the BSP is the perfect tool for bisecting a room along a plane. It’s an incredible hack, and we’re excited to see Quake expand into a puzzle game. [Matt] dives into greater detail on how the software renderer works in another video that’s well worth a watch.

Perhaps the most incredible aspect of this technique is that it could run on original hardware. If you want to bring a little more Quake to life, why not get the Quake light flicker in your house? Video after the break.

Continue reading “Adding Portals To Quake”

Growing Simple Crystals For Non-Linear Optics Experiments

Here’s an exercise for you: type “crystals” into your favorite search engine and see what you get. If you’re anything like us, you’ll get a bunch of pseudoscientific posts about the healing power of crystals, along with offers to buy the same at exorbitant prices. But woo-woo aside, certain crystals do have seemingly magical powers — like the ability to turn light from one color into another.

None of this is magic, of course. Rather, as optics aficionado [Les Wright] explains, non-linear optics is all about physics. Big physics, too, like the kind that made the National Ignition Facility the first fusion research outfit to reach the “break-even” point, at least in terms of optical energy. To do so, they need to convert megajoules of infrared laser beams all the way across the visible spectrum into the ultraviolet, relying on huge crystals of deuterated potassium dihydrogen phosphate (KDP) to do so. Depending on how they’re cut, crystals of these sorts have non-linear optical properties like second-harmonic generation, which combines two input photons into a single output photon with twice the energy of the original. This results in a halving of the wavelength of the input, which doubles the frequency.

While the process used at the NIF produces crystals of enormous proportions, [Les] has more modest needs and thus a simpler process. His KDP is an off-the-shelf chemical, nothing fancy about it, which is added to boiling water to make a saturated solution. A little of the solution is poured out into a watch glass to make seed crystals, and everything is allowed to cool slowly. A nice seed crystal is glued to a piece of monofilament fishing line and suspended in the saturated solution, and with enough time a good-sized crystal forms. Placed into the beam path of a 1,064 nm IR laser and rotated carefully relative to the beam, the crystal easily produces a brilliant green laser output.

This is fascinating stuff, and we’re looking forward to seeing where [Les] goes with this. Polishing the crystals to make them optically cleaner would be a good next step, as would perhaps growing even larger crystals.

Continue reading “Growing Simple Crystals For Non-Linear Optics Experiments”

ITER Dreams And The Practical Reality Of Making Nuclear Fusion Work On Earth

Doing something for the first time is tough. Yet to replicate the nuclear fusion process that powers the very stars, and do it right here on Earth in a controlled and sustained fashion is decidedly at the top of the list of ‘tough’ first times. What further complicates matters is when in order to even get to this ‘first’ you also add in a massive, international construction project and a heaping of geopolitics, all of which is a far cry from past nuclear fusion experiments.

With the International Thermonuclear Experimental Reactor (ITER) as the most visible part of nuclear fusion research, it is perhaps little wonder that the recent string of delays and budget increases is leading some to proclaim doom and gloom over the entire sector. This ironically in contrast with the recent news from the US’s NIF and its laser-based inertial confinement fusion, which is both state-funded and will never produce commercial power.

In light of this, it feels pertinent to ask the question of whether ITER is the proverbial white elephant, or even the mausoleum of international science that a recent article in Scientific American makes it out to be. Is fusion research truly doomed to peter out amidst the seemingly never-ending work on ITER?

Continue reading “ITER Dreams And The Practical Reality Of Making Nuclear Fusion Work On Earth”