CNC Robot Makes A Move

Another day, another Kickstarter. While we aren’t often keen on touting products, we are keen on seeing robotics and unusual mechanisms put to use. The Goliath CNC has long since surpassed its $90,000 goal in an effort to put routing robots in workshops everywhere.

Due to their cost and complexity, you often only find omni-wheels on robots scurrying around universities or the benches of robotics hobbyists, but the Goliath makes use of nine wheels configured as three sets in a triangular pattern. This is important as any CNC needs to make compound paths, and for wheeled robots an omni-wheel base is often the best bet for compound 2D translation.

coordinate drawingWhat really caught our eye is the Goliath’s unique positioning system. While most CNC machines have the luxury of end-stops or servomotors capable of precise positional control, the Goliath has two “base sensors” that are tethered to the top of the machine and mounted to the edge of the workpiece. Each sensor connects to the host computer via USB and uses vaguely termed “Radio Frequency technology” that provides a 100Hz update for the machine’s coordinate system. This setup is sure to beat out dead-reckoning for positional awareness, but details are scant on how it precisely operates. We’d love to know more if you’ve used a similar setup for local positioning as this is still a daunting task for indoor robots.

A re-skinned DeWalt 611 router makes for the core of the robot, which is a common option for many a desktop milling machine and other bizarre, mobile CNCs like the Shaper Origin. While we’re certain that traditional computer controlled routers and proper machining centers are here to stay, we certainly wouldn’t mind if the future of digital manufacturing had a few more compact options like these.

Soon You’ll Sit Inside A Robot’s Head At Work

MIT’s Computer Science and Artificial Intelligence Lab, CSAIL, has created a process of teleoperating a Baxter humanoid robot with an Oculus Rift VR headset. This project is partially aimed towards making manufacturing jobs a hell of a lot of fun telecommutable. It could even be a way to supervise robot workers from a distance.

In a nutshell, the user controls the robot remotely in a virtual reality environment. The user does this specifically in a VR environment modeled like a control room with multiple sensor displays, making it feel like they are sitting inside the robot’s head. By using hand controllers, users can match their movements to the robot’s to complete various tasks. If you’ve seen Pacific Rim, you are probably envisioning a Jaegar right about now — minus the psychic linking.

Continue reading “Soon You’ll Sit Inside A Robot’s Head At Work”

Our Reactions To The Treatment Of Robots

Most of us have seen employees of Boston Dynamics kicking their robots, and many of us instinctively react with horror. More recently I’ve watched my own robots being petted, applauded for their achievements, and yes, even kicked.

Why do people react the way they do when mechanical creations are treated as if they were people, pets, or worse? There are some very interesting things to learn about ourselves when considering the treatment of robots as subhuman. But it’s equally interesting to consider the ramifications of treating them as human.

The Boston Dynamics Syndrome

Shown here are two snapshots of Boston Dynamics robots taken from their videos about Spot and Atlas. Why do scenes like this create the empathic reactions they do? Two possible reasons come to mind. One is that the we anthropomorphize the human-shaped one, meaning we think of it as human. That’s easy to do since not only is it human-shaped but the video shows it carrying a box using human-like movements. The second snapshot perhaps evokes the strongest reactions in anyone who owns a dog, though its similarity to any four-legged animal will usually do.

Is it wrong for Boston Dynamics, or anyone else, to treat robots in this way? Being an electronic and mechanical wizard, you might have an emotional reaction and then catch yourself with the reminder that these machines aren’t conscious and don’t feel emotional pain. But it may be wrong for one very good reason.

Continue reading “Our Reactions To The Treatment Of Robots”

“The Cow Jumped Over The Moon”

[Ash] built Moo-Bot, a robot cow scarecrow to enter the competition at a local scarecrow festival. We’re not sure if Moo-bot will win the competition, but it sure is a winning hack for us. [Ash]’s blog is peppered with delightful prose and tons of pictures, making this an easy to build project for anyone with access to basic carpentry and electronics tools. One of the festival’s theme was “Out of this World” for space and sci-fi scarecrows. When [Ash] heard his 3-year old son sing “hey diddle diddle, the cat and the fiddle…”, he immediately thought of building a cow jumping over the moon scarecrow. And since he had not seen any interactive scarecrows at earlier festivals, he decided to give his jumping cow a lively character.

Construction of the Moo-Bot is broken up in to three parts. The skeleton is built from lumber slabs and planks. The insides are then gutted with all of the electronics. Finally, the whole cow is skinned using sheet metal and finished off with greebles to add detailing such as ears, legs, spots and nostrils. And since it is installed in the open, its skin also doubles up to help Moo-bot stay dry on the insides when it rains. To make Moo-Bot easy to transport from barn to launchpad, it’s broken up in to three modules — the body, the head and the mounting post with the moon.

Moo-Bot has an Arduino brain which wakes up when the push button on its mouth is pressed. Its two OLED screen eyes open up, and the MP3 player sends bovine sounding audio clips to a large sound box. The Arduino also triggers some lights around the Moon. Juice for running the whole show comes from a bank of eight, large type “D” cells wired to provide 6 V — enough to keep Moo-Bot fed for at least a couple of months.

Check out the video after the break to hear Moo-bot tell some cow jokes – it’s pretty funny. We’re rooting for it to win the competition — Go Moo-bot.

Continue reading ““The Cow Jumped Over The Moon””

Friction Differential Drive Is A Laser-Cut Triumph

Here on Hackaday, too often do we turn our heads and gaze at the novelty of 3D printing functional devices. It’s easy to forget that other techniques for assembling functional prototypes exist. Here, [Reuben] nails the aspect of functional prototyping with the laser cutter with a real-world application: a roll-pitch friction differential drive built from just off-the shelf and laser-cut parts!

The centerpiece is held together with friction, where both the order of assembly and the slight wedged edge made from the laser cutter kerf keeps the components from falling apart. Pulleys transfer motion from the would-be motor mounts, where the belts are actually tensioned with a roller bearing mechanism that’s pushed into position. Finally, the friction drive itself is made from roller-blade wheels, where the torque transferred to the plate is driven by just how tightly the top screw is tightened onto the wheels. We’d say that [Reuben] is pushing boundaries with this build–but that’s not true. Rather, he’s using a series of repeatable motifs together to assemble a both beautiful and complex working mechanism.

This design is an old-school wonder from 2012 uncovered from a former Stanford course. The legendary CS235 aimed to teach “unmechanically-minded” roboticists how to build a host of mechanisms in the same spirit as MIT’s How-to-make-almost-Anything class. While CS235 doesn’t exist anymore, don’t fret. [Reuben] kindly posted his best lectures online for the world to enjoy.

Continue reading “Friction Differential Drive Is A Laser-Cut Triumph”

Researchers Squeeze Out A New Breed Of Robot Locomotion

Researchers have been playing around with various oddball forms of robot locomotion; surely, we’ve seen it all, haven’t we? Not so! Lucky for us, [researchers at Stanford] are now showing us a new way for robots to literally extrude themselves from point A to point B.

This robot’s particular motion for mechanism involves unwinding itself inside out. From a stationary base, a reel caches meters of the robot’s uninflated polyethylene body, which it deploys by pressurizing. Researchers can make full 3D turns by varying the amount of inflated air in outer control chambers. What’s more, they can place end effectors or even payloads at the tip of the growing end with their position held in place by a cable.

As we can imagine, any robot that can squeeze its way up to 72 meters long can have dozens of applications, and the folks at Stanford have explored a host of nooks and crannies of this space. Along the way, they deploy complex antenna shapes into the air, deliver small payloads, extinguish fires, and squeeze through all sorts of uninviting places such as flytraps and even a bed of nails. We’ve placed a video below the break, but have a look at Ars Technica’s full video suite to get a sense of the sheer variety of applications that they imparted upon their new creation.

Biomimetics tends to get us to cry “gecko feet” or “snake robots” without thinking too hard. But these forms of locomotion that come to mind all seem to derive from the animal kingdom. One key element of this soft robot is that its stationary base and vine-like locomotion both have its roots in the plant kingdom. It’s a testament to just how unexplored this realm may be, and that researchers and robots will continue to develop new ways of artificially “getting around” for years to come.

Thanks for the tip, [Jacob!]

Continue reading “Researchers Squeeze Out A New Breed Of Robot Locomotion”

Earth Rovers Explore Our Own Planet

While Mars is currently under close scrutiny by NASA and other space agencies, there is still a lot of exploring to do here on Earth. But if you would like to explore a corner of our own planet in the same way NASA that explores Mars, it’s possible to send your own rover to a place and have it send back pictures and data for you, rather than go there yourself. This is what [Norbert Heinz]’s Earth Explorer robots do, and anyone can drive any of the robots to explore whatever locations they happen to be in.

A major goal of the Earth Explorer robot is to be easy to ship. This is a smaller version of the same problem the Mars rovers have: how to get the most into a robot while having as little mass as possible. The weight is kept to under 500g, and the length, width, and height to no more than 90cm combined. This is easy to do with some toy cars modified to carry a Raspberry Pi, a camera, and some radios and sensors. After that, the robots only need an interesting place to go and an Internet connection to communicate with Mission Control.

[Norbert] is currently looking for volunteers to host some of these robots, so if you’re interested head on over to the project page and get started. If you’d just like to drive the robots, though, you can also get your rover fix there as well. It’s an interesting project that will both get people interested in exploring Earth and in robotics all at the same time. And, if you’d like to take the rover concept beyond simple exploration, there are other machines that can take care of the same planet they explore.

Continue reading “Earth Rovers Explore Our Own Planet”