Fail Of The Week: Good Prosthetic Hand Design Goes Bad

Is this a case of a good design gone wrong in the build phase? Or is this DIY prosthetic arm a poor design from the get-go? Either way, [Will Donaldson] needs some feedback, and Hackaday is just the right place for that.

Up front, we’ll say kudos to [Will] for having the guts to post a build that’s less than successful. And we’ll stipulate that when it comes to fully articulated prosthetic hands, it’s easy to fail. His design is ambitious, with an opposable thumb, fingers with three phalanges each, a ball and socket wrist, and internal servos driving everything. It’s also aesthetically pleasing, with a little bit of an I, Robot meets Stormtrooper look.

But [Will]’s build was plagued with print problems from the start, possibly due to the complex nature of the bosses and guides within the palm for all the finger servos. Bad prints led to creaky joints and broken servos. The servos themselves were a source of consternation, modified as they were for continuous rotation and broken apart for remotely mounting their pots in the hand’s knuckles. The video below relates the tale of woe.

There’s a lot to admire with [Will]’s build, but it certainly still has its issues. He’s almost to the point of other more successful DIY hand builds but just needs a little help. What say you in the comments line? Continue reading “Fail Of The Week: Good Prosthetic Hand Design Goes Bad”

Telepresence Robot 2000 Leagues Under The Sea

Telepresence robots are now a reality, you can wheel around the office and talk to people, join a meeting, see stuff and bump into your colleagues. But imagine if telepresence were applied to deep sea exploration. Today we can become oceanographers through the telepresence system created by Bob Ballard (known for locating the Titanic, discovered deep sea geothermal vents, and more) and his team at the Inner Space Center. Put on your Submariner wristwatch because its time for all of us to explore the ocean depths via the comfort of our home or office.

Continue reading “Telepresence Robot 2000 Leagues Under The Sea”

PobDuino Makes The Most Of Grove

The chassis of a toy robot serves as the base of a robot built by [Jean Noel]. Called #PobDuino, the robot features two Arduino-compatible boards under the hood.

First, a Seeeduino Lotus, a Arduino board peppered with a dozen Grove-compatible sockets. The board, which is the size of an UNO, is mounted so that the plugs project out of the front of the robot, allowing ad-hoc experimentation with the various Grove System modules. Meanwhile, a custom ATmega328 board (the PobDuino) interprets Flowcode instructions and sends commands to the various parts of the robot: servos are controlled by an Adafruit servo driver board and the DC motors are driven by a Grove I2C motor driver.

We love how easy it is to customize the robot, with both the Lotus and the Adafruit 16-channel servo driver on the exterior of the robot. Just plug and play!

Learn more about Grove-compatible plugs and a lot more in [Elliot]’s My Life in the Connector Zoo.

Wire-bots, Roll Out!

Designing and 3D-printing parts for a robot with a specific purpose is generally more efficient than producing one with a general functionality — and even then it can still take some time. What if you cut out two of those cumbersome dimensions and still produce a limited-yet-functional robot?

[Sebastian Risi] and his research team at the IT University of Copenhagen’s Robotics, Evolution, and Art Lab, have invented a means to produce wire-based robots. The process is not far removed from how industrial wire-bending machines churn out product, and the specialized nozzle is also able to affix the motors to the robot as it’s being produced so it’s immediately ready for testing.

A computer algorithm — once fed test requirements — continuously refines the robot’s design and is able to produce the next version in a quarter of an hour. There is also far less waste, as the wire can simply be straightened out and recycled for the next attempt. In the three presented tests, a pair of motors shimmy the robot on it’s way — be it along a pipe, wobbling around, or rolling about. Look at that wire go!

Continue reading “Wire-bots, Roll Out!”

Monster Mindstorms Delta Bot Delicately Picks Candy

A group of embedded developers from Sioux Embedded Systems in Eindhoven, the Netherlands, wanted to get experience working on Microsoft .Net. To make it fun they made it their project to produce a LEGO train with visitors at LEGO World, the official LEGO convention in the Netherlands. The team developed an application in C# to fully automate the train, with Mindstorms NXT and EV3 bricks as well as LEGO Power Functions motors controlling everything.

The train project carries a simple premise: the visitor chooses one of four colors, and the train goes and picks up a piece of simulated candy with the matching color. Called Sioux.net on Track, the project has produced a new train every year since 2012 with improvement goals in place to add features with every version. Ironically, the least interesting part of the setup is the actual train and track. The team’s creativity comes to the fore in two areas of the project: the method by which the candy color is selected, and the assembly that dispenses the correct color into the train car.

Team member [Hans Odenthal] has built candy-grabbers for various years’ trains. He learned about the ABB FlexPicker and this year decided to build a delta robot for the layout. It consists of huge girders constructed from 5×9 and 5×11 Technic beam frames held together with more Technic beams and hundreds of connector pegs. The three arms each move on a pair of turntables which are geared down to provide as much torque as possible — the fake candy pieces are light, but the arms themselves weigh a lot. [Hans] ended up revamping the gearboxes to up the ratio from 1:5 to 1:25.

Continue reading “Monster Mindstorms Delta Bot Delicately Picks Candy”

This Isn’t The R2-D2 Controller You’re Looking For

Who loves a good R2-D2 robot? Everyone, but especially young Star Wars fans who — frustratingly — have no problem spotting a controller and spoiling the illusion of an R2 unit brought to life. [Bithead942]’s concealed his R2-D2’s remote and re-establishes the illusion of an autonomous droid — no Jedi mind-tricks necessary.

[Bithead942] prefers to accompany his droid in traditional a Rebel Alliance pilot’s suit, so that gives him a bit of extra space under the jumpsuit to help conceal the controller. Dismantling a Frsky Taranis X9D controller, [Bithead942] meditated on how to use it while so concealed. In a stroke of insight, he thought of his unused Wiimote nunchucks, and launched into the build.

Continue reading “This Isn’t The R2-D2 Controller You’re Looking For”

Rovers To The Rescue: Robot Missions Tackles Trash

Everyone knows plastic trash is a problem with junk filling up landfills and scattering beaches. It’s worse because rather than dissolving completely, plastic breaks down into smaller chunks of plastic, small enough to be ingested by birds and fish, loading them up with indigestible gutfill. Natural disasters compound the trash problem; debris from Japan’s 2011 tsunami washed ashore on Vancouver Island in the months that followed.

Erin Kennedy was walking along Toronto Island beach and noticed the line of plastic trash that extended as far as the eye could see. As an open source robot builder, her first inclination was to use robots to clean up the mess. A large number of small robots following automated routines might be able to clear a beach faster and more efficiently than a person walking around with a stick and a trash bag.

Erin founded Robot Missions to explore this possibility, with the goal of uniting open-source “makers” — along with their knowledge of technology — with environmentalists who have a clearer understanding of what needs to be done to protect the Earth. It was a finalist in the Citizen Science category for the 2016 Hackaday Prize, and would fit very nicely in this year’s Wheels, Wings, and Walkers challenge which closes entries in a week.

Join me after the break for a look at where Robot Missions came from, and what Erin has in store for the future of the program.

Continue reading “Rovers To The Rescue: Robot Missions Tackles Trash”