Custom Macro Keyboard With Sweet Backlighting

From the smallest 60% keyboards for those with no desk space to keyboards with number pads for those doing data entry all day, there’s a keyboard size and shape for just about everyone. The only problem, even with the largest keyboards, is that they’re still fairly limited in what they can do. If you find yourself wishing for even more functionality, you might want to build something like this custom macro keyboard with built-in LED backlighting.

Rather than go with a standard mechanical keyboard switch like a Cherry MX, this build is based around TS26-2 pushbuttons with built-in LED lighting. [atkaper] only really needed one button for managing the mute button on MS Teams, but still built a total of eight switches into this keyboard which can all be individually programmed with different functions. The controller is an Arduino Leonardo and the enclosure was 3D printed.

Paired with the classic IBM Model M keyboard, this new macro keyboard adds plenty of functionality while also having control over LED backlighting. Macro keyboards are incredibly useful, especially with their ability to easily change function with control over the software that runs on them. The key to most builds is the 32U4 chip found in some Atmel microcontrollers which allows it to easily pass keyboard (and mouse) functionality to any computer its plugged in to.

Desktop Performance In A Custom Mac Laptop

Most of us either own or have used a laptop at some point. For traveling, as a student, or even for browsing Hackaday on the couch in front of the TV, they are pretty much indispensable. They do tend to have a sharp performance reduction compared to a desktop though thanks to the thermal and battery limitations of a portable form factor. [Scott Yu-Jan] wanted to solve that in his own life by building a custom Mac laptop with none of these downsides.

Noticing that a modern iPad Mini has exactly the same width of his Mac Mini, [Scott] set about combining the two devices into a single unit that he could assemble when traveling. A 3D printed case with a traditional laptop clamshell design takes care of physically combining these two devices, and a USB-C cable between the two takes care of combining them in software thanks to Apple’s Duet program. While this has better performance than a Macbook Pro it might actually have some perks, since Apple continues to refuse to make a laptop with a touchscreen.

There are some downsides, of course. The price is higher than a comparable Macbook Pro for the iPad and Mac together, plus it doesn’t include a keyboard or mouse. It also has no battery, so it needs to be plugged in. In the follow-up video linked below, though, [Scott] notes that for him this still made sense as he uses the Mac and iPad individually already, and only works remotely at places that have power outlets readily available. For the average person, though, we might recommend something different if you really need an esoteric laptop-like machine.

Thanks to [Varun] for originally sending in this tip!

Continue reading “Desktop Performance In A Custom Mac Laptop”

Custom Piano Tickles The Ivories

The core ethos of “hacking” is usually interpreted as modifying something for a use that it wasn’t originally built for. Plenty of builds are modifications or improvements on existing technology, but sometimes that just isn’t enough. Sometimes we have to go all the way down and build something completely from scratch, and [Balthasar]’s recent piano-like musical instrument fits squarely into this category.

This electronic keyboard is completely designed and built from scratch, including the structure of the instrument and the keys themselves. [Balthasar] made each one by hand out of wood and then built an action mechanism for them to register presses. While they don’t detect velocity or pressure, the instrument is capable of defining the waveform and envelope for any note, is able to play multiple notes per key, and is able to change individual octaves. This is thanks to a custom 6×12 matrix connected to a STM32 microcontroller. Part of the reason [Balthasar] chose this microcontroller is that it can do some of the calculations needed to produce music in a single clock cycle, which is an impressive and under-reported feature for the platform.

With everything built and wired together, the keyboard is shockingly versatile. With the custom matrix it is easy to switch individual octaves on the piano to any range programmable, making the 61-key piano capable of sounding like a full 88-key piano. Any sound can be programmed in as well, further increasing its versatility, which is all the more impressive for being built from the ground up. While this build focuses more on the electronics of a keyboard, we have seen other builds which replicate the physical action of a traditional acoustic piano as well.

Continue reading “Custom Piano Tickles The Ivories”

Portable Pizza Oven Has Temperature Level Over 900

While it’s possible to make pizza from scratch at home right down to the dough itself, it’ll be a struggle to replicate the taste and exquisite mouthfeel without a pizza oven. Pizzas cook best at temperatures well over the 260°C/500°F limit on most household ovens while pizza ovens can typically get much hotter than that. Most of us won’t have the resources to put a commercial grade wood-fired brick oven in our homes, but the next best thing is this portable pizza oven from [Andrew W].

The build starts with some sheet metal to form the outer and inner covers for the oven. [Andrew] has found with some testing that a curved shape seems to produce the best results, so the sheet metal goes through rollers to get its shape before being welded together. With the oven’s rough shape completed, he fabricates two different burners. One sits at the back of the oven with its own diffuser to keep the oven as hot as possible and the other sits underneath a cordierite stone to heat from the bottom. Both are fed gas from custom copper plumbing and when it fires up it reaches temperatures hot enough that it can cook a pizza in just a few minutes. With some foldable legs the oven also ends up being fairly portable, and its small size means that it can heat up faster than a conventional oven too.

This is [Andrew]’s third prototype oven, and it seems like he has the recipe perfected. In fact, we featured one of his previous versions almost two years ago and are excited to see the progress he’s made in this build. The only downside to having something like this would be the potential health implications of always being able to make delicious pizzas, but that is a risk we’d be willing to take.

Continue reading “Portable Pizza Oven Has Temperature Level Over 900”

Cash register keyboard

Custom Keyboard From A Cash Register

Having a high-quality mechanical keyboard is often a rite of passage in the computing world, with gamers and coders alike having strong opinions on the best devices. Even then, the standard keyboard layout can be substantially limiting, and often something a little extra and customizable is needed beyond even the highest-quality QWERTY keyboards. Reddit user [RonaldMcWhisky] was looking for a keyboard to use for macros, and discovered that it is possible to put cash register keyboards into service for any unique task.

Cash register keyboards have a number of advantages over a standard QWERTY design. They have big keys, the keys can be labeled, and the keys can be ordered in a way the user wants. The hardware is also cheap since cash registers are everywhere. Adapting one to work with a standard computer took a little bit of doing. Since this is /r/linuxhardware, you’re not going to find any Windows support here, but assuming you have the minimum system requirements of a Linux install to recognize the keyboard itself, a Python script can handle the events as the keys are pressed and interpret them in whatever way you want.

The actual hardware in this specific build was a Wincor Nixdorf TA85P — let us know in the comments if you’ve got one of those in your junk box. But the idea of using a cash register for a custom keyboard is interesting, and certainly a lot of work is already done for you if you don’t want to build your own custom keyboard from the ground up.

Casting Silicone Parts With 3D-Printed Inserts For Stiffness

Prolific maker [Jan Mrázek] shared his process for casting soft silicone parts that nevertheless have some added stiffness, which he accomplished by embedding porous, 3D-printed “ribs” into the pieces during the casting process. The 3D-printed inserts act as a sort of skeleton, and as a result, the parts have a soft silicone surface but gain structure and rigidity that simply wouldn’t be obtained if the part were cast entirely in silicone. The nice thing is that no new materials or tools were needed; [Jan] 3D printed both the molds for the parts as well as the structural inserts. It’s always nice when one can use the same tool and materials to accomplish different functions.

The parts [Jan] is making are interesting, as well. He observed that the process of swapping resin in his printer’s build tank was an unpleasant experience for a number of reasons, chief among them being that resin is sticky and messy, and the shape of the build tank doesn’t make pouring resin from it a clean job.

His solution was to design a pour spout that could be pressed onto the build tank, and some specially-designed squeegees to allow scraping the tank clean with ease. Silicone is the ideal material for the parts because it turns out that sticky resin beads nicely on silicone’s surface. Anywhere else, resin tends to spread out and form a sticky mess, but on silicone resin it forms tidy drops and is much easier to clean up.

It’s a technique worth keeping in mind, because one never knows when it could come in handy. Fabricating soft robots for example tends to involve silicone casting and clever techniques. See [Jan]’s parts in action in the video, embedded below.

Continue reading “Casting Silicone Parts With 3D-Printed Inserts For Stiffness”

Building A Stump Grinder From The Ground Up

Felling a tree properly is a skill that takes some practice to master, especially without causing any injuries or property damage. Getting the tree cut down though is sometimes only half of the battle, as the stump and roots need to be addressed as well. Unless you have a few years to wait for them to naturally decompose you might want to employ a stump grinder, and unless you want to spend a chunk of money on a stump grinding service or buy your own, you might want to do what [Workshop from Scratch] did and build your own.

This stump grinder isn’t anything to scoff at, either, and might even fool some into thinking it’s a consumer grade tool from a big box store. Far from it though, as almost everything down to the frame is custom machined specifically for this build. The only thing that isn’t built from scratch, including the cutting wheel, is the beefy 15 horsepower motor. Once it gets going it is able to carve stumps down to the ground in no time thanks especially to some gear reductions in the drive line from the motor to the cutting head.

Before anyone mentions safety, it looks like [Workshop from Scratch] has made some upgrades since his last project which was a gas-powered metal cutting chainsaw. Since then it looks like he has upgraded the sheet metal to something a little thicker, even though a stump grinder has arguably lower risk due to the slower speed of the cutting wheel and also to the fact that the cutting medium is wood and not metal. There are also brakes and an emergency shutoff switch. It sure seems like a fine addition to his collection of completely custom tools.

Continue reading “Building A Stump Grinder From The Ground Up”