Licence-Exempt Network Has High Ambitions

It’s safe to say that the Internet of Things is high on the list of buzzwords du jour. It was last seen rapidly ascending towards the Peak of Inflated Expectations on the Gartner Hype Cycle, and it seems that every startup you encounter these days is trying to place an IoT spin on their offering. Behind all the hype though lie some interesting wireless technologies for cheaply making very small microprocessors talk to each other and to the wider world.

Today we’d like to draw your attention to another wireless technology that might be of interest to Hackaday readers working in this area. UKHASnet is a wireless network developed from within the UK high-altitude ballooning community that uses cheap licence-exempt 868MHz radio modules in Europe and 915MHz in the Americas. The modules they are using have a surprisingly usable power output for licence exempt kit at 100mW, so the system has been designed for extensibility and bridging through nodes mounted on balloons, multirotors, or even seaborne buoys.

All UKHASnet packets are sent as human-readable plaintext ASCII, and the system borrows some of the features of amateur radio’s APRS. All packets are considered unreliable, all nodes repeat the packets they receive with their own node ID appended, and there are gateway nodes that make the packets available to the internet. There is a repeat number built into each packet to stop packets continuing ad infinitum.

Building a node is a simple process, requiring only the radio module, a microcontroller, and a battery. As examples they provide an implementation for the Arduino, and one for the LPC810 microcontroller. Their preferred radio module is the HopeRF RFM69HW, however the system will be capable of running on other modules of the same type.

So far the UKHASnet people have proven the system over a 65km range, created nodes on the sea, attached it to quadcopters, and built a host of other nodes.

This network differs from its commercial counterparts in that it has no proprietary IP or licencing from a standards body. And despite the name, you don’t have to be in the UK to use it. All data is in the clear, and thus it is likely that you won’t see it in mass-market commercial products. But it is exactly these features that are likely to make it attractive to the maker community. Your scribe will probably not be the only person who goes away from this article to suggest that their local hackspace finds the space for a UKHASnet node.

This is the first time we’ve featured UKHASnet here at Hackaday. Plenty of projects using licence-free radio modules have made it onto these pages, though, including this extreme-range remote controller for model aircraft, and this weather station sensor network that could have probably found UKHASnet useful had its creator had it to hand.

Shoot Darts at the Shins of Total Strangers

[Michael Brumlow] found us and sent us a link. Within a few seconds, we were driving a webcam-enabled Nerf dart tank through his office and trying not to hit walls or get stepped on by his co-workers. Unfortunately, it was out of darts at the time, but you can find them all over the floor if you scout around.

screenshot_remote_botAll of the code details, including the link where you can test drive it yourself, are up on [Michael]’s GitHub. The brains are an Intel Edison board, and the brawns are supplied by an Arduino motor controller shield and (for the latest version) a chassis bought from China.

It runs fairly smoothly, considering the long round trip from [Michael]’s office in Texas, through wherever Amazon keeps their Web Services, over to us in Germany and back. Once we got used to the slight lag, and started using the keyboard’s arrow keys for control, we were driving around like a pro.

It’s got a few glitches still, like the camera periodically overheating and running out of WiFi distance. [Michael] said he’d try to keep it charged up and running while you give it a shot. The controls are multiplexed in the cloud, so your chance of steering it is as good as anyone else’s. It’ll be interesting to see what happens when thousands of Hackaday readers try to control it at once!

It takes a certain kind of bravery to put your telepresence robot up on the open Internets. So kudos to you, [Michael], and we hope that you manage to get some work done this week, even though you will have all of Hackaday driving into your cubicle walls.

Cricket Scoreboard is a Big Win for Novice Hackers

The game of cricket boggles most Americans in the same way our football perplexes the rest of the world. We won’t even pretend to understand what a “wicket” or an “over” is, but apparently it’s important enough to keep track of that so an English cricket club decided to build their own electronic scoreboard for their – pitch? Field? Help us out here.

This scoreboard build was undertaken by what team member [Ian] refers to as some “middle-aged blokes from Gloucestershire” with no previous electronics experience. That’s tough enough to deal with, but add to it virtually no budget, a huge physical size for the board, exposure to the elements, and a publicly visible project where failure would be embarrassingly obvious, and this was indeed an intimidating project to even consider. Yet despite the handicaps, they came up with a great rig, with a laser-cut acrylic cover for a professional look. A Raspberry Pi runs the LED segments and allows WiFi connections from a laptop or phone in the stands. They’ve even recently upgraded to solar power for the system.

And we’ll toot our own horn here, since this build was inspired at least in part by a Hackaday post. The builders have a long list of other links that inspired or instructed them, and we think that says something powerful about the hacker community that we’ve all been building – a group with no previous experience manages a major build with the guidance of seasoned hackers. That’s something to feel good about.

J.C. Bose and the Invention of Radio

The early days of electricity appear to have been a cutthroat time. While academics were busy uncovering the mysteries of electromagnetism, bands of entrepreneurs were waiting to pounce on the pure science and engineer solutions to problems that didn’t even exist yet, but could no doubt turn into profitable ventures. We’ve all heard of the epic battles between Edison and Tesla and Westinghouse, and even with the benefit of more than a century of hindsight it’s hard to tell who did what to whom. But another conflict was brewing at the turn of 19th century, this time between an Indian polymath and an Italian nobleman, and it would determine who got credit for laying the foundations for the key technology of the 20th century – radio.

Continue reading “J.C. Bose and the Invention of Radio”

Hillbilly Lego Focus Puller

There’s almost nothing you can’t build with the right set of Lego parts. [Rigjob] built up a Lego-based wireless remote follow-focus system that’ll give professional systems a run for their money.

Now [Rigjob] self-identifies as a hillbilly, but he’s not just a redneck with a camera. He’s set up the Lego controller to remember minimum and maximum focus positions as well as mark points along the way. The controller simply won’t turn the lens outside of the focus range, and an interactive graph shows you where you are within the range. For a focus wheel, he uses (drum-roll please!) a Lego off-road wheel. It looks really comfortable, usable, and actually quite professional.

There’s a lot of tech in the Lego controller and motors that make this “simple” hack simple. Under the hood, there’s a Bluetooth connection, a geared stepper motor with a position sensor, a communication protocol, and a whole ton of programming in the Lego controller that makes it all drag-and-drop programmable. But to a long-bearded hillbilly cameraman, it all looks like child’s play. And that’s the hallmark of good design. Kudos, Lego.

If you can’t get enough Lego camera tech, check out this DIY slit-scan stargate rig, or (what else?) a Lego 3D chocolate printer.

Continue reading “Hillbilly Lego Focus Puller”

Giving the C64 A WiFi Modem

If there’s any indication of the Commodore 64’s longevity, it’s the number of peripherals and add-ons that are still being designed and built. Right now, you can add an SD card to a C64, a technology that was introduced sixteen years after the release of the Commodore 64. Thanks to [Leif Bloomquist], you can also add WiFi to the most cherished of the home computers.

[Leif]’s WiFi modem for the C64 is made of two major components. The first is a Microview OLED display that allows the user to add SSIDs, passwords, and configure the network over USB. The second large module is the a Roving Networks ‘WiFly’ adapter. It’s a WiFi adapter that uses the familiar Xbee pinout, making this not just a WiFi adapter for the C64, but an adapter for just about every wireless networking protocol out there.

[Leif] introduced this WiFi modem for the C64 at the World of Commodore earlier this month in Toronto. There, it garnered a lot of attention from the Commodore aficionados and one was able to do a video review of the hardware. You can check out [Alterus] loading up a BBS over Wifi in the video below.

Continue reading “Giving the C64 A WiFi Modem”

Hackaday Dictionary: Bluetooth Low Energy

Bluetooth is one of the mainstays of the mobile gadget world, allowing mobile devices to communicate easily over short distances. It’s how your wireless headset talks to your cell phone without the complexity and power requirements of WIFi. In particular, the Bluetooth Low Energy (BLE) component is interesting for those who build portable gadgets, because it requires a very small amount of power. Continue reading “Hackaday Dictionary: Bluetooth Low Energy”