How Much Thrust Is Your Prop Really Making?

The problem of components not conforming to their claimed specification is one that must challenge engineers in all fields, including it seems, that of multi-rotors and remote controlled aircraft. A motor can boast an impressive spec on the website which sells it, but overheat or just not deliver when it’s on your bench. Thus [Valkyrie Workshop] has come up with a simple but ingenious rig to evaluate a motor and propeller combo without breaking the bank.

It tales the form of a L-shaped wooden bracket clamped to a pivot point at its corner with one arm pointing upwards, with motor and propeller in a 3D printed holder on the upwards arm. The other arm extends horizontally and lies on a digital kitchen scale the same distance from the pivot as the motor. The same force as is exerted by the motor is transmitted via the bracket to the kitchen scale, allowing a direct readout of the thrust in grams or kilograms. This is a first version of the rig, further work will move to a load cell and Arduino for more flexibility in measurement.

We’ve featured similar devices here in the past, including one version which can be mounted to an automobile so it can be tested at speed.

Continue reading “How Much Thrust Is Your Prop Really Making?”

Reduction of a physical map to a graph.

Where Graph Theory Meets The Road: The Algorithms Behind Route Planning

Back in the hazy olden days of the pre-2000s, navigating between two locations generally required someone to whip out a paper map and painstakingly figure out the most optimal route between those depending on the chosen methods of transport. For today’s generations no such contrivances are required, with technology having obliterated even the a need to splurge good money on a GPS navigation device and annual map updates.

These days, you get out a computing device, open Google Maps or equivalent, ask it how you should travel somewhere, and most of the time the provided route will be the correct one, including the fine details such as train platform and departure times. Yet how does all of this seemingly magical route planning technology work? It’s often assumed that Dijkstra’s algorithm, or the A* graph traversal algorithm is used, but the reality is that although these pure graph theory algorithms are decidedly influential, they cannot be applied verbatim to the reality of graph traversal between destinations in the physical world.

Continue reading “Where Graph Theory Meets The Road: The Algorithms Behind Route Planning”

Amazon’s ‘Just Walk Out’ Shopping Is Out, Moves To Dash Carts At Its Grocery Stores

After a few years of Amazon promoting a grocery shopping experience without checkout lines and frustrating self-checkout experiences, it is now ditching its Just Walk Out technology. Conceptualized as a store where you can walk in, grab the items you need and walk out with said items automatically charged to your registered payment method, it never really caught much traction. More recently it was revealed that the technology wasn’t even as automated as portrayed, with human workers handling much of the tedium behind the scenes. This despite claims made by Amazon that it was all powered by deep machine learning and generative AI.

An Amazon Dash Cart's user interface, with scanner and display. (Credit: Amazon)
An Amazon Dash Cart’s user interface, with scanner and display. (Credit: Amazon)

Instead of plastering the ceilings of stores full with cameras, it seems that Amazon instead wishes to focus on smart shopping carts that can keep track of what has been put inside them. These so-called Dash Carts are equipped with cameras and other sensors to scan barcodes on items, as well as weigh unlabeled items (like fruit), making them into somewhat of a merging of scales at the vegetable and fruit section of stores today, and the scanning tools offered at some grocery stores to help with self-checkout.

As the main problem with the Just Walk Out technology was that it required constant (700 out of 1,000 sales in 2022) human interaction, it will be interesting to see whether the return to a more traditional self-service and self-checkout model (albeit with special Dash Lanes) may speed things along. Even so, as Gizmodo notes, Amazon will still keep the Just Walk Out technology running across locations in the UK and elsewhere. Either this means the tech isn’t fully dead yet, or we will see a revival at some point in time.

The printer's display with the exploit-loaded animation playing, saying "hacked by blasty" and a bunch more stuff

A Fun Exploit For Canon Printers Brings GDB Gifts

Modern printers make it all that much more tempting to try and hack them — the hardware generally tends to be decent, but the firmware appears to be designed to squeeze as much money out of you as possible while keeping your annoyance level consistently high. That’s why it’s nice to see this exploit of the Canon imageCLASS MF74XCdw series (MF742Cdw/MF743Cdw) by [blasty], triggerable over a network connection, with a story for our amusement.

In this post, we get a tale of how this hack came out of a Pwn2Own Toronto challenge, notes on the hardware involved, and we’re shown the journey to a successful hack. The Canon printer OS is built without many of the protections, which makes playing with it easier than with more modernized targets, but it’s nevertheless not straightforward. Still, exploiting a couple things like the SOAP XML implementation and the UTF8 encoder nets you an ability to play nice animations on the display, and most certainly, control over the entirety of the hardware if you wanted it.

One of the most fun things about this hack is the GDB stub recently included in the repo. If you wanted to debug Canon printers for fun or profit, [blasty] brings you a GDB stub to do that comfortably, with a respectable README that even has porting notes for other Canon ImageCLASS printer models, should you lay your hands on a different machine of despair. WiFi connectivity appears to be enough for this hack, so you better make sure you don’t have your network-connected printers exposed on the Internet — not that you needed more reasons to avoid that.

PCB of the antenna about to be modded, with components desoldered and different parts of the circuit highlighted

Make A GPS Antenna Compatible With Same Manufacturer’s Receiver

GPS can be a bit complex of a technology – you have to receive a signal below the noise floor, do quite a bit of math that relies on the theory of relativity, and, adding insult to injury, you also have to go outside to test it. Have you ever wondered how GPS antennas work? In particular, how do active GPS antennas get power down the same wire that they use to send signal to the receiver? Wonder not, because [Tom Verbeure] gifts us a post detailing a mod letting a fancy active GPS antenna use a higher-than-expected input voltage.

[Tom]’s post has the perfect amount of detail – enough pictures to illustrate the entire journey, and explanations to go with all of it. The specific task is modifying a Symmetricom antenna to work with a Symmetricom GPS receiver, which has a puzzling attribute of supplying 12V to the antenna instead of more common 3.3V or 5V. There’s a few possible options detailed, and [Tom] goes for the cleanest possible one – replacing the voltage regulator used inside of the antenna.

With a suitable replacement regulator installed and a protection diode replaced, the antenna no longer registers as a short circuit, and gets [Tom] a fix – you, in turn, get a stellar primer on how exactly active GPS antennas work. If your device isn’t ready to use active GPS antennas, [Tom]’s post will help you understand another GPS antenna hack we covered recently – modifying the Starlink dish to use an active antenna to avoid jamming on the frontlines.

A NanoVNA As A Dip Meter

A staple of the radio amateur’s arsenal of test equipment in previous decades was the dip meter. This was a variable frequency oscillator whose coil would be placed near the circuit to be tested, and which would show an abrupt current dip on a moving coil meter when its frequency matched the resonant frequency of what it was testing. For some reason the extremely useful devices seem hard to come by in 2024, so [Rick’s Ham Shack] has come along with a guide to using a nanoVNA in their place.

It’s a simple enough technique, indeed it’s a basic part of using these instruments, with a large sensor coil connected to the output port and a frequency sweep set up on the VNA. The reactance graph then shows any resonant peaks it finds in the frequency range, something easily demonstrated in the video below the break by putting a 20 meter (14 MHz) trap in the coil and seeing an immediate clear peak.

For many readers this will not be news, but for those who’ve not used a VNA before it’s a quick and easy demo of an immediate use for these extremely versatile instruments. For those of us who received our callsigns long ago it’s nothing short of miraculous that a functional VNA can be picked up at such a reasonable price, and we’d go as far as to suggest that non radio amateurs might find one useful, too. Read our review, if you’re interested.

Continue reading “A NanoVNA As A Dip Meter”

FLOSS Weekly Episode 777: Asterisk — Wait, Faxes?

This week Jonathan Bennett and David Ruggles sit down with Joshua Colp to talk about Asterisk! That’s the Open Source phone system software you already interact with without realizing it. It started as a side project to run the phones for Linux Support Services, and it turned out working on phone systems was more fun than supporting Linux. The project grew, and in the years since has landed at Sangoma, where Joshua holds the title of Asterisk Project Lead.

Asterisk is used in call centers, business phone systems, and telecom appliances around the world. But how does it handle faxes, WebRTC, and stopping spam calls? Just kidding on that last one, still an unsolved problem.

Continue reading “FLOSS Weekly Episode 777: Asterisk — Wait, Faxes?”