Quantum Sensor Receives From 0 Hz To 1000 GHz

Although it isn’t that uncommon to have broadband radio coverage in a single device, going from 0 Hz to 1000 GHz with one antenna and receiver is a bit much. But not for the US Army it seems, because they’ve developed a quantum sensor that can cover that range.

The technology uses Rydberg atoms, which are atoms with a highly excited valence electron. They’ve been used for a variety of sensing applications before, such as reading the cosmic microwave background radiation. However, until the Army’s work there has been no quantitative analysis of using them for wide-spectrum communications.

Continue reading “Quantum Sensor Receives From 0 Hz To 1000 GHz”

Equipping A Workshop Using Plywood And Handheld Power Tools

Properly equipping a home workshop for the DIY discipline of your choice can often end up costing more than we would like to admit, and is a never ending process. [JSK-Koubou] is doing exactly that, except he is building almost all of his equipment using plywood, hand-held power tools and a LOT of attention to detail.

As far as we can tell the series really got started with a humble hand-held circular saw guide, with every tool being used to build more tools. So far the list boasts more than 50 different videos of tools built around a drill, circular saw, jigsaw, router, planar or grinder. This includes a wood lathe, drill press, jointer and various drills guides and sanders. The level of precision each tool almost eye watering. He even pulls out a dial gauge on some builds to check alignment. We honestly didn’t know plywood equipment could look this good and work so well. Check out the YouTube playlist after the break to see for yourself.

Previously we also covered [JSK-Koubou]’s set of perfectly tuned wooden speaker enclosures, the craftsmanship is really something to behold. For more impressive homebuilt hardware, take a look at this 8-axis camera crane built by another YouTuber for his home shop. Continue reading “Equipping A Workshop Using Plywood And Handheld Power Tools”

LIDAR System Isn’t Just A Rangefinder Anymore

For any project there’s typically a trade-off between quality and cost,as higher quality parts, more features, or any number of aspects of a project can drive its price up. It seems as though [iliasam] has managed to avoid this paradigm entirely with his project. His new LIDAR system knocks it out of the park on accuracy, sampling, and quality, and somehow manages to only cost around $114 in parts.

A LIDAR system works by sending out many pulses of light in different directions, measuring the reflections of that light as it returns. LIDAR systems therefore improve with higher frequency pulses and faster control electronics for both the laser output and the receiving data. This system manages to be accurate to within a few centimeters and works up to 25 meters all while operating at 15 scans per second. The key was a high-powered laser module which can output up to 75 watts for extremely short times. More details can be found at this page (Google Translate from Russian).

Another bonus from this project is that [iliasam] has made everything available from his GitHub page including hardware specifications, so as long as you have a 3D printer this won’t take long to produce either. There’s even detailed breakdowns of how the laser driving circuitry works, and how there are safety features built in to keep anyone’s vision from accidentally getting damaged. Needless to say, this isn’t just a laser rangefinder module but if you want to see how you can repurpose those, [iliasam] can show you that as well.

Another Blinky Light Project — With A COVID-19 Twist

It seems all anyone is talking about right now is the virus scare that has most of us with a little extra time on our hands. [Paul Klinger] — a name we’ve seen before — built a blinking LED project to pass the time. So what? Well, the lights are made to look like a SARS-CoV-2 virus and the LEDs blink the virus RNA code. You can see the results in the video below.

This isn’t very surprising when you consider we’ve seen [Paul] make tiny things and even blink out his own DNA, so he’s clearly got some specific interests in this area.

Continue reading “Another Blinky Light Project — With A COVID-19 Twist”

Wind Farms In The Night: On-Demand Warning Lights Are Coming

There appears to be no shortage of reasons to hate on wind farms. That’s especially the case if you live close by one, and as studies have shown, their general acceptance indeed grows with their distance. Whatever your favorite flavor of renewable energy might be, that’s at least something it has in common with nuclear or fossil power plants: not in my back yard. The difference is of course that it requires a lot more wind turbines to achieve the same output, therefore affecting a lot more back yards in total — in constantly increasing numbers globally.

Personally, as someone who encounters them occasionally from the distance, I find wind turbines mostly to be an eyesore, particularly in scenic mountainous landscapes. They can add a futuristic vibe to some otherwise boring flatlands. In other words, I can not judge the claims actual residents have on their impact on humans or the environment. So let’s leave opinions and emotions out of it and look at the facts and tech of one issue in particular: light pollution.

This might not be the first issue that comes to mind when thinking about wind farms. But wind turbines are tall enough to require warning lights for air traffic safety, and can be seen for miles, blinking away in the night sky. From a pure efficiency standpoint, this doesn’t seem reasonable, considering how often an aircraft is actually passing by on average. Most of the time, those lights simply blink for nothing, lighting up the countryside. Can we change this?

Continue reading “Wind Farms In The Night: On-Demand Warning Lights Are Coming”

Turn By Wire Is A Machinist’s Sixth Sense

It’s hard not to be a little intimidated by the squeaks and whirs that come with your first journey into a machine shop. Here, skilled machinists pilot giant hunks of cast iron that turn metals into piles of chips to yield beautiful parts. But what if machine tools themselves didn’t have to seem so scary. What if using them could feel a bit more intuitive, even, dare we say, natural from the get-go?

Enter Turn by Wire, a unique set of force feedback and machine control concepts applied to a lathe brought to you by researchers [Rundong Tian], [Vedant Saran], [Mareike Kritzler], [Florian Michahelles], and [Eric Paulos] at Berkelely.

Turn by Wire vastly reimagines the relationship between a user’s control inputs and the machine outputs in two ways: (1) by changing the mapping between the hand cranks and machine movements and (2) by changing the haptic feedback felt by the machinist. Since both of these interactions can be defined programmatically, the researchers created three unique ways of interacting with the lathe. First, by defining a tool path in the graphic user interface (GUI), the machinist can use a single hand crank to step forward and back in time along that toolpath. Second, by applying virtual guidelines in the GUI, both the machine and the hand cranks will physically snap to the guide lines when they are sufficiently close. Finally, the hand cranks can be used to teach the machinist a technique by adding resistive forces into the hand cranks depending on movement while a machinist is stepping through a process like peck drilling.

This is a great example of [Tom Knight’s] “just wrap a computer around it!” as mentioned by [Bunnie Huang] when we featured the IQ Motor Modules. It’s a powerful example of how putting a computer between the controls and the machine can correct for real world imperfections, be they in the mechanics of the machine of the operator. For the curious, have a look at [Rundong’s] paper published at UIST and [Vedant’s] master’s thesis.

 

Continue reading “Turn By Wire Is A Machinist’s Sixth Sense”

Coronavirus Testing: Just The Facts

The news these days is dominated by the one big story: the COVID-19 pandemic. Since the first reports of infection surfaced in China sometime in late 2019, the novel coronavirus that causes the disease, bloodlessly dubbed SARS-CoV-19, has swept around the globe destroying lives, livelihoods, and economies. Getting a handle on the disease has required drastic actions by governments and sacrifices by citizens as we try to slow the rate of infection

As with all infectious diseases, getting ahead of COVID-19 is a numbers game. To fight the spread of the virus, we need to know who has it, where they are, where they’ve been, and whom they’ve had contact with. If we are unable to gather the information needed to isolate potential carriers, all that we can do is impose mass quarantines and hope for the best. Hence the need for mass COVID-19 testing, and the understandable hue and cry about its slow pace and the limited availability of test kits.

But what exactly do these test kits contain? What makes mass testing so difficult to implement? As we shall see, COVID-19 testing is anything but simple, even if the underlying technology, PCR, is well-understood and readily available. A lot of the bottlenecks are, as usual, bureaucratic, but there are technical limits too. Luckily, there are clever ways around those restrictions, but understanding the basics of COVID-19 testing is the best place to start.

Continue reading “Coronavirus Testing: Just The Facts”